Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

9

Active Users

1

Followers

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

c o s e c 2 x d y + 2 d x = ( 1 + y c o s 2 x ) c o s e c 2 x d x .

d y d x + 2 s i n 2 x = 1 + y c o s 2 x .

I . F . = e c o s 2 x d x = e s i n 2 x 2

S o l u t i o n y e s i n 2 x 2 = e s i n 2 x 2 . c o s 2 x d x . P u t s i n 2 x 2 = t c o s 2 x d x = d t

y ( 0 ) = 1 + e 1 2 ( y ( 0 ) + 1 ) 2 = ( e 1 2 ) 2 = e 1

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

d y = c o s ( 1 2 c o s 1 ( e x ) ) e x 1 ( e x ) 2 d x p u t c o s 2 θ = e x 2 s i n 2 θ d θ = e x d x

d y = 2 c o s θ s i n 2 θ d θ 1 c o s 2 2 θ y = 2 s i n θ + c y = 1 , θ = 0 , c = 0

y = 2 1 e x 2 1 a t ( α , 0 ) , e α = 2

New answer posted

a month ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Truth table

Hence according to option

(4) is most appropriate option

p

q

p -> q

T

T

T

T

F

F

F

T

T

F

F

T

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

y . d y d x = x [ y 2 x 2 + ? ( y 2 / x 2 ) ? ' ( y 2 / x 2 ) ] , x > 0 , ? > 0

L e t y x = t

d y d x = t + x . d t d x

l n ( ? ( y 2 4 ) ) = l n 4 + l n ( ? ( 1 ) )

= l n 4 ( ? ( 1 ) )

? ( y 2 4 ) = 4 . ? ( 1 )

New answer posted

a month ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

l i m x 0 ( 2 c o s x . c o s 2 x ) x + 2 x 2 ( 1 )

= l i m x 0 e 2 ( s i n x c o s 2 x c o s x . 1 ( 2 s i n 2 x ) 2 c o s 2 x 2 x )

= l i m x 0 e 2 ( 1 2 + 1 ) = e 3 = e a

a = 3

New answer posted

a month ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

d y d x = 2 x + y 2 x 2 y 2 y d y 2 y 1 = 2 x d x p u t 2 y 1 = t 2 y l n 2 d y = d t

1 l n 2 d t t = 2 x d x 1 l n 2 l n t = 2 x l n 2 + C l n 2    put x = 0 and y = 1 we get C = -1

l n ( 2 y 1 ) = 2 x 1    put x = 1 and we get y = log2 (1 + e)

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Let l = 2 e x + 3 e x 4 e x + 7 e x d x = 2 e 2 x + 3 4 e 2 x + 7 d x  

= 2 e 2 x 4 e 2 x + 7 d x + 3 e 2 x 4 + 7 e 2 x d x               

Put 4 e 2 x + 7 = t 4 + 7 e 2 x = λ  

8 e 2 x d x = d t 1 4 e 2 x d x = d λ              

= 1 4 d t t 3 1 4 d λ λ = 1 4 l n t 3 1 4 l n λ + c

u = 1 3 2 , v = 1 2              

->so, u + v = 7

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

d y d x = 2 ( y + 2 s i n x 5 ) x 2 c o s x

where P = -2x, Q = 4x sin x – 10x – 2 cosx

Solution be y . e x 2 = ( 4 x s i n x 1 0 x 2 c o s x ) . e x 2 d x + c

y . e x 2 ( 4 x s i n x 1 0 x 2 c o s x ) . e x 2 d x + c     

y . e x 2 = e x 2 ( 5 2 s i n x ) + c . . . . . . . . ( i )  

Put x = 0, y = 7 then 7 = 5 + c i.e. c = 2

Put x = p then y . e π 2 = 5 . e π 2 + 2

y = 5 + 2 e x 2

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

( 2 x 1 0 y 3 ) d y + y d x = 0              

d x d y + 2 x y 1 0 y 2 = 0              

d x d y + 2 y x = 1 0 y 2 Linear differential equation

P = 2 y , Q = 1 0 y 2              

N o w p u t x = 2 , y = β t h e n 2 β 2 = 2 β 5 2              

or β 5 β 2 1 = 0  

So B will be roots of y 5 y 2 1 = 0  

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given curve is f(x) + xf'(x) = x2 i.e. y + x d y d x = x 2

where P = 1 x , Q = x

I . F . = e P d x = e 1 x d x = e l n x = x

Solution be y.x = x . x d x

x y = x 3 3 + c . . . . . . . . . ( i )

(i) passes through (-2, 2) then 4 = 8 3 + c

c = 4 3        

(i) -> 3xy = x3 – 4

or x3 – 3xf(x) – 4 = 0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.