Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

9

Active Users

1

Followers

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let l = d x ( x 2 + x + 1 ) 2 . . . . . . . . . . . . . ( i )

Now d x x 2 + x + 1 = ( 1 x 2 + x + 1 ) d x

by integration by parts

=> d x ( x 2 + x + 1 ) 2 = 4 3 2 t a n 1 2 x + 1 3 + 1 3 ( 2 x + 1 ) ( x 2 + x + 1 ) + c

a = 4 3 3 , b = 1 3

Now, 9 ( 3 a + b ) = 9 ( 4 3 + 1 3 ) = 1 5

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

L . R . = | 3 * 2 + 4 x 3 5 | 3 2 + 4 2 = 1 1 5              

Equation of family of parabolas

( x h ) 2 = 1 1 5 ( y k )              

Differentiate 2 (x – h) = 1 1 5 d y d x  

Again differentiate 2 = 1 1 5 d 2 y d x 2  

1 1 d 2 y d x 2 = 1 0              

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

d y d x + e y 2 x 2 x 2 = 0  

e y d y d x e y x = 1 2 x 2              

Put e y = t e y d y d x = d t d x  

d t d x + t x = 1 2 x 2              

d t d x + t x = 1 2 x 2

 I. F. = e d x x = e l n x = x  

Soln. tx = x 2 x 2 d x = 1 2 l n x + c  

x = 1 e y = 1 2 y = l n 2              

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

d y d x + s e c 2 x t a n x y = t a n x

IF = tan x

Solution : y tan x = x – tan x + C

l i m x 0 + x y = 1 C = 1

For x = π 4 , y = π 4

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(x + y) = 4xy

d y d x = 4 x y + 4 y 2 1 1 4 x 2 4 x y ,

d 2 y d x 2 = ( 1 4 x 2 4 x y ) ( 4 y + 4 x y ' + 8 y y ' ) ( 4 x y + 4 y 2 1 ) ( 8 x 4 y 4 x y ' ) ( 1 4 x 2 4 x y ) 2

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

y 2 d x + ( x 2 x y + y 2 ) d y = 0

d x d y + x 2 x y + y 2 y 2 = 0 d x d y + ( x y ) 2 ( x y ) + 1 = 0

Put x = vy v + y d v d y + v 2 v + 1 = 0

y d v d y + v 2 + 1 = 0

π 6 + l n | y | = π 4

l n | y | = π 1 2

New answer posted

2 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

 dydx+(2x2+11x+13x3+6x2+11x+6)y=x+3x+1,x>1

IF = epdx=(x+1)2(x+2)x+3

Pdx=2x2+11x+13x3+6x2+11x+6dn=(2x+1+1x+21x+3)dx

=ln((x+1)2(x+2)/(x+3))

2x2+11x+13(x+1)(x+2)(x+3)=Ax+1+Bx+2+Cx+3

2x2+11x+13=A(x+2)(x+3)+B(x+1)(x+3)+C(x+1)(x+2)

x = -1

⇒ 4 = 2A ⇒ A = 2

x = -2

⇒ -1 = -B Þ B = 1

x2 – 3 ⇒ -2 = 2c

c = -1

y(x+1)2(x+2)x+3=x+3x+1(x+1)2(x+2)x+3dx

(x+1)(x+2)dx

x33+3x22+2x+c

(0,1)123=c

x = 1 y(3)=13+32+2+23=32+3=92

y = 32

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

dydx=x+y2xy

Let x – 1 = X, y – 1 = Y

then DE: dYdX=X+YXY=1+YX1YX

Put y = vx

then dYdX=V+XdVdX

V + XdVdX=1+V1V

XdVdX=1+V1VV

=1+V21V

1V1+V2dV=dXX

V1V2+1dV+dXX=0

12ln|V2+1|tan1V+ln|X|=c

lnV2+1Xtan1V=c

ln(1+(Y1X)2|X1|)tan1Y1X1=c

(2,1)ln(1+01)0=c

c = 0

ln(X1)2+(Y1)2=tan1Y1X1

point (k + 1, 2) lnk2+1=tan11k

12ln(k2+1)=tan11k

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

2 x 2 d y d x 2 x y + 3 y 2 = 0

d y d x = y x 3 2 ( y x ) 2

Put y = vx

  d y d x = v + x d v d x

P o i n t ( e , e 3 )

e ( e 3 ) + 3 2 l n e = C

C = 3 2 3 = 3 2

3 2 l n | x | x y + 3 2 = 0

x = 1 y = 2 3              

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

b n = 0 π / 2 c o s 2 n x s i n x d x

= 0 π / 2 1 + c o s 2 n x 2 s i n x d x

b n b n 1 = 0 π / 2 c o s ( 2 n x ) c o s ( 2 ( n 1 ) x ) 2 s i n x d x

= c o s ( 2 n 1 ) x ( 2 n 1 ) ] 0 π / 2 = 1 2 n 1 [ 0 1 ] = 1 2 n 1

b n 1 b n = 1 2 n 1

b 1 b 2 = 1 3 ( A ) 1 5 , . . . . . .

b 2 b 3 = 1 3 ( B ) 5 , 7 , 9 , . . . . .

b 3 b 4 = 1 7 ( C )

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.