Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

4

Active Users

1

Followers

New answer posted

7 months ago

0 Follower 30 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1+exy)dx+exy(1xy)dy=0(1+exy)dx=exy(1xy)dydxdy=exy(1xy)1+exy=f(xy)

Hence, the given D.E. is homogenous.

Let, x=yv=yx so that dydx=v+ydxdy in the D.E.

Then, v+ydvdy=ev(1v)1+ev

ydvdy=vevev1+evv=vevevvvev1+evydvdy=(ev+v)1+ev(1+evev+v)dv=dyy

Integrating both sides we get,

log|ev+v|=log|y|+log|c|

Putting back v=xy we get,

log|exy+xy|=log|cy|=exy+xy=cy

=x+yexy=c is the general solution.

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

ydx+xlog(yx).dy2xdy=0ydx=[2xdyxlog(yx)dy]ydx=[2xxlog(yx)]dydydx=y2xxlog(yx)=yx(2logyx)=yx2logyx=f(yx)

Hence, the given D.E is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=v2logv

xdvdx=v2logvv=v2v+vlogv2logv=vlogvv2logv2logvv[logv1]dv=dxx1+1logvv[logv1]dv=dxx1[logv1]v[logv1]dv=dxx

[1v(logv1)1v]dv=dxx

Integrating both sides we get,

[1v(logv1)1v]dv=dxxdvv(logv1)logv=logx+logc

Let, logv1=t,so,ddv(logv1)=dtdv

1v=dtdvdvv=dtdttlogv=logx+logclogtlogv=logx+logclog|logv1|logv=logcx

Putting back v=yx we get,

log|log(yx)1|logyx=logcx=log[log(yx)1yx]=logcx=yx[log(yx)1]=cx

=log(yx)1=cy is the required solution.

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is xdydxy+xsin(yx)=0

xdydx=yxsin(yx)dydx=yxsin(yx)x=yxsinyx=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=vsinv

xdvdx=sinvdvsinv=dxxcosecvdv=dxx

Integrating both sides we get,

cosecvdv=dxxlog|cosecvcotv|=logx+logclog|cosecvcotv|=logcxcosecvcotv=cx

Putting back v=yx we get,

cosecyxcotyx=cx1sinyxcosyxsinyx=cx

x[1cosyx]=csin(yx) is the solution of the D.E.

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

{xcos(yx)+ysin(yx)}ydx={ysin(yx)xcos(yx)}xdydydx={xcosyx+ysinyx}y{ysinyxxcosyx}x=xycosyx+y2sinyxxysinyxx2cosyx

yxcosyx+(yx)2sinyx(yx)sinyxcosyx {Dividing numerator and denominator by x2 }

=f(yx)

Hence, the given D.E is homogenous.

Let, y=vx=yx=v so that dydx=v+xdvdx in the D.E.

Then, v+xdvdx=vcosv+v2sinvvsinvcosv

xdvdx=vcosv+v2sinvvsinvcosvv=vcosv+v2sinvv2sinv+vcosvvsinvcosvvcosvvsinvcosv(vsinvcosvvcosv)dv=2dxx

Integrating both sides,

vsinvcosvvcosvdv=2dxxtanvdv1vdv=2log|x|+log|c|log|secv|log|v|=logx2+logclog|secvv|=logcx2secvv=cx2secv=cx2v

Putting back v=yx=cx2yx=cxy

secyx=cx2yx=cxy1cosyx=cxy1c=xycosyx

xycosyx=c1 where c1=1c 

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

Integrating both sides,

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

x2dydx=x22y2++xydydx=x22y2++xyx2=12y2x2+yxdydx=12(yx)2+yx=f(yx)

Hence, the D.E. is homogenous fxn

Let, y=vx.=yx=v so that, dydx=v+xdvdx is the D.E.

Thus, v+xdvdx=12v2+v

xdvdx=12v2dv12v2=dxx

Integrating both sides,

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The Given D.E. is

(x2y2)dx+2xydy=02*ydy=(x2y2)dx=dydx=(x2y2)2xy=(y2x2)2xy=12(y2x2x2)(xyx2)=12[(yx)21](yx)=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vxyx=v,sothat,dydx=v+xdvdx in the D.E

v+xdvdx=12[v21v]xdvdx=v212vv=v212v22v=1v22v(2v1+v2)dv=dxx

Integrating both sides we get,

Putting back v=yx we get,

x[y2x2+1]=cy2+x2x=c

y2+x2=xc is the required solution.

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The Given D.E. is (xy)dy(x+y)dx=0

(xy)dy=(x+y)dxdydx=x+yxy=x(1+yx)x(1yx)=1+yx1yx=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vx=yx=v,so,dydx=v+xdvdx in the D.E

Then, v+xdvdx=1+v1vxdvdx=1+v1vv=1+v1+v21v=1+v21v[1v1+v2]dv=dxx

Integrating both sides,

1v1+v2dv=dxx11+v2dv122v1+v2dv=logx+ctan1v12log(1+v2)=logx+c

Putting back v=yx,weget,

=tan1yx12log|1+y2x2|=logx+c=tan1yx12log|x2+y2x2|=logx+c=tan1yx12[log(x2+y2)logx2]=logx+c

=tan1yx12log(x2+y2)+12logx2=logx+c=tan1yx12log(x2+y2)+log(x2)12=logx+c=tan1yx12log(x2+y2)+logx=log+c=tan1yx=12log(x2+y2)+c

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

y1=x+yx=dydx=1+yx=f (yx)

Hence, the given D.E is homogenous.

Let,  y=vxyx=v, sothat, dydx=v+xdvdx

So, the D.E. becomes

v+xdvdx=1+vxdvdx=1dv=dxx

Integrating both sides,

dv=dxxv=log|x|+c

Putting v=yx back we get,

yx=log|x|+c

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx=x2+y2x2+x+y=x2(1+y2x2)x2(1+yx)=F(x,y)Then,F(λx,λy)=λ2x2λ2x2[1+λ2y2λ2x21+λyλx]=λ0F(x,y)=λ2F(x,y)

Hence, F(x,y) is a homogenous fxn of degree 2.

To solve it, let

y=vx,sothat,dydx=v.dxdx+xdvdxv=yxdydx=v+xdvdx

The D.E. now becomes,

v+xdvdx=1+v21+vxdvdx=1+v21+vv=1+v2vv21+v=1v1+v(1+v1v)dv=dxx

Integrating both sides,

1+v1vdv=dxx1+v1vdv=logx+c2(1v)1vdv=logx+c21vdv1dv=logx+c2log|1v|1v=logx+clog(1v)2+v=logxc

Put v=yx,

log(1yx)2+y2=logx+clog(xyx)2+logx=yxc

log[(xyx)2*x]=yxcxyx=eyxc=c1eyxc,where,c1e

(xy)2=c1.xeyx is the required solution of the D.E.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.