Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

4

Active Users

1

Followers

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+2ytanx=sinx

dydx+(2tanx)y=sinx Which is of form dydx+Px=Q

So, P=2tanx&Q=sinx

I.F=ePdy=e2tanxdx=e2log|secx|=elogsec2=sec2

Thus the solution is of the form y*(I.F)=Q.(I.F)dx+c

y.sec2x=sinx.sec2xdx+c=sinxcos2dx+c=tanx.secxdx+c=ysec2=secx+c=y=1secx+csec2x=cosx+ccos2=y=cosx+ccos2x

Given, y=0,Whenx=π3

=0=cosπ3+ccos2π3{c4=12,c=42,c=2}=0=12+c(12)2=0=12+c4

C = -2

 The particular solution is

y=cosx2cos2x

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(x+3y2)dydx=y(x+3y2)dy=ydxydxdy=x+3y2dxdy=xy+3y

dxdy1y.x=3y Which is form dxdy+Px=Q

So, P=1y&Q=3y

I.F=ePdy=e1ydy=elog|y|=elogy1=y1=1y

Thus the solution is of the form.

x*1y=3y.1ydy+c=xy=3dy+c=xy=3y+c=x=3y2+cy

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

ydx+(xy2)dy=0=ydxdy+xy2=0=dxdy+xyy=0

=dxdy+1y.x=y Which is of form.

dxdy+Px=Q

So, P=1y&Q=y

I.F=ePdy=e1ydy=elogy=y

Thus the general solution is of form, x*(I.F)=Q*(I.F)dy+c

x.y=y.ydy+c=xy=y2dy+c=xy=y33+c=x=y23+cy

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

(x+y)dydx=1=x+y=dxdy

=dxdyx=y Which is of form =dxdy+Px=Q

So,  P=1&Q=y

I.F=ePdy=e1dy=ey

Thus the general solution is of the form,  x* (I.F)=Q (I.F)dy+c

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

=dydx+y(1+xcotx)x=1 Which is of form dydx+Py=Q

So, P=(1+xcotx)x&Q=1

Pdx=(1x+xcotxx)dx=log|x|+log|sinx|=log|xsinx|

I.F=ePdxelog|xsinx|xsinx

Thus the solution is of the form.

y*xsinx=1.xsinxdx+c=xsinxddxsinxdxdx+c=2cosx+cosxdx+c=y*xsinx=xcosx+sinx+c=y=xcosxsinx+sinxxsinx+cxsinx=y=cotx+1x+cxsinx

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1+x)2dy+2xydx=cotxdx=(1+x)2dydx+2xy=cotx

=dydx+2x1+x2*y=cotx1+x2 Which is of form dydx+Py=Q

So , P=2x1+x2&Q=cotx1+x2

I.F=ePdx=e2x1+x2dx=elog|1+x2|=1+x2

Thus the solution is of the form,

y(1+x2)=cotx1+x2*(1+x2)dx+cy(1+x2)=cotxdx+c

=log|sinx|+c

y=log|sinx|1+x2+c1+x2=(1+x2)1log|sinx|+(1+x2)1c

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

xlogxdydx+y=2xlogx

=dydx+yxlogx=2x2 Which is of form dydx+Py=Q

So, P=1xlogx&Q=2x2

I.F=ePdx=e1xlogxdx=e1xlogxdx=elog|logx|=logx

Thus, the general solution is of the form

y*logx=2x2*logxdx+cy.logx=2[logx1x2dxddxlogx1x2dx.dx]+c=2[logx*(x11)1x(x11)dx]+c=2[logxx+x2dx]+c=2[logxx(x11)]+c

=ylogx=2x[logx+1+c]

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

xdydx+2y=x2logx

dydx+2x.y=xlogx which is of form dydx+Py=Q

So, P=2x&Q=xlogx

I.F=ePdx=e2xdx=e2logx=elogx2=x2

Thus, the general solution is of the form.

y*x2=xlogx.x2dx+c

=logxx3dx+c

=logxx3dxddxlogxx3dxdx+c=logx.x4414*x44dx+c

=yx2=x44logxx416+c=y=x24logxx216+cx2

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

cos2xdydx+y=tanx=dydx+1cos2xy=tanxcos2x

=dydx+sec2xy=sec2xtanx Which is of form dydx+Py=Q

So, P=sec2x&Q=sec2xtanx

I.F=ePdx=esec2dx=etanx

Thus, the general solution is of the form.

y.etanx=sec2xtanx.etanxdx+c

Let, tanx=t=sec2xdx=dt

=yet=t.etdt+c=tetdtddttetdt.dt+c=tetetdt+c=tetet+c=et(t1)+c

yetanx=etanx(tanx1)+cy=(tanx1)+cetanx

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

dydx+(secx)y=tanx Which is in the form dydx+Py=Q

So, P=secx&Q=tanx

 I.F=ePdx=esecxdx=elog|secx+tanx|=secx+tanx

Thus, the general solution is ,

y*I.F=Q*I.Fdx+c=y*(secx+tanx)=tanx(secx+tanx)dx+c

=(tanxsecx+tan2x)dx+c=(tanxsecx+sec21)dx+c=sec+tanxx+c

=(secx+tanx)y=secx+tanxx+c{?sec2x=tan2x+1}

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.