Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

9

Active Users

1

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

xdydx+2y=x2logx

dydx+2x.y=xlogx which is of form dydx+Py=Q

So, P=2x&Q=xlogx

I.F=ePdx=e2xdx=e2logx=elogx2=x2

Thus, the general solution is of the form.

y*x2=xlogx.x2dx+c

=logxx3dx+c

=logxx3dxddxlogxx3dxdx+c=logx.x4414*x44dx+c

=yx2=x44logxx416+c=y=x24logxx216+cx2

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

cos2xdydx+y=tanx=dydx+1cos2xy=tanxcos2x

=dydx+sec2xy=sec2xtanx Which is of form dydx+Py=Q

So, P=sec2x&Q=sec2xtanx

I.F=ePdx=esec2dx=etanx

Thus, the general solution is of the form.

y.etanx=sec2xtanx.etanxdx+c

Let, tanx=t=sec2xdx=dt

=yet=t.etdt+c=tetdtddttetdt.dt+c=tetetdt+c=tetet+c=et(t1)+c

yetanx=etanx(tanx1)+cy=(tanx1)+cetanx

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

dydx+(secx)y=tanx Which is in the form dydx+Py=Q

So, P=secx&Q=tanx

 I.F=ePdx=esecxdx=elog|secx+tanx|=secx+tanx

Thus, the general solution is ,

y*I.F=Q*I.Fdx+c=y*(secx+tanx)=tanx(secx+tanx)dx+c

=(tanxsecx+tan2x)dx+c=(tanxsecx+sec21)dx+c=sec+tanxx+c

=(secx+tanx)y=secx+tanxx+c{?sec2x=tan2x+1}

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+yx=x2 Which is in the form dydx+Py=Q

So,  P=1x=&Q=x2

I.F=ePdx=e12dx=elogx=x {? elogx=x}

Thus, the general solution is

y*I.F=Q*I.Fdx+cy.x=x2.xdx+c=xy=x3dx+c=xy=x44+c

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, D.E. is

dydx+3y=e2x which is of the form

dydx+Py=Q

Where P=3&Q=e2x

So, I.F =ePdx=e3dx=e3x

So, the solution is =y*I.F=e2x(I.F).dx+c

=y*e3x=e2x.e3xdx+c=e3xy=exdx+c=e3xy=ex+c=y=exe3x+ce3x=y=e2x+ce3x

Is the required general solution.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+2y=2sinx which is of form dydx+Px=Q

We have, P = 2

Q=sinx

So, I.F. =ePdx=e2dx=e2x

The solution is y*I.F=Q*(I.F)dx+c

ye2x=sinxe2xdx+c=ye2x=I+c(1)Where,I=sinxe2x=sinxe2x(ddxsinxe2xdx)dx=sinxe2x212[cosxe2xdx]=e2xsinx212[cose2xdx(ddxcosxe2xdx)dx]=e2xsinx212[cosxe2x212(cosx)e2xdx]=e2xsinx2e2xcosx414sinxe2xdx

=I=e2xsinx2e2xcosx4141=I+14I=2e2xsinxe2xcosx4=54I=e2x(2sinxcosx)4=I=e2x(2sinxcosx)5

Hence, equation, (1) becomes,

ye2x=e2x5(2sinxcosx)+c=y=(2sinxcosx)5+ce2x

Is the required solution.

New answer posted

4 months ago

0 Follower 14 Views

V
Vishal Baghel

Contributor-Level 10

In (D), each of the terms has a degree 2.

Hence, (D) is homogenous

 Option (D) is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

For a homogenous D.E. of the formula f (yx)

We put,  xy=0=x=vy

 Option (c) is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

2xy+y22x2dydx=0=2x2dydx=2xy+y2=dydx=2xy+y22x2=yx+12(yx)2=f(yx)

i.e, the given is homogenous.

Let, y=vx =yx=v so that dydx=v+xdvdx is the D.E.

Then, v+xdvdx=v+12v2

=xdvdx=12v2=dvv2=dx2x

Now, =dvv2=dx2x

=v2+12+1=12log|x|+c=1v=12log|x|+c

Putting back yx=v we get,

=xy=12log|x|+c

Givenyx=vwhenx=1 and y= 2

=12=12log|1|+c=c=12

 The particular solution is,

=xy=12log|x|12=2xy=log|x|1=y=2xlog|x|1=2x1log|x|

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

dydxyx+cosec(yx)=0=dydx=yxcosec(yx)=f(yx)

i.e, the given D.E. is homogenous.

Let, y=vx=yx=v So that, dydx=v+xdvdx in the D.E

Then, v+xdvdx=vcosecv

=xdvdx=cosecv=dvcosecv=dxx=sinvdv=dxx

Integrating both sides we get,

sinvdv=dxx=cosv=log|x|+c=cosv=log|x|c

Putting back v=yx we get,

=cosyx=log|x|c

Given, y=0,when,x=1

=cos0=log1c=c=1

 The required particular solution is

cos(yx)=log|x|+1=log|x|+log|c|=cos(yx)=log|cx|

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.