Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

9

Active Users

1

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The Given D.E. is (xy)dy(x+y)dx=0

(xy)dy=(x+y)dxdydx=x+yxy=x(1+yx)x(1yx)=1+yx1yx=f(yx)

Hence, the given D.E. is homogenous.

Let, y=vx=yx=v,so,dydx=v+xdvdx in the D.E

Then, v+xdvdx=1+v1vxdvdx=1+v1vv=1+v1+v21v=1+v21v[1v1+v2]dv=dxx

Integrating both sides,

1v1+v2dv=dxx11+v2dv122v1+v2dv=logx+ctan1v12log(1+v2)=logx+c

Putting back v=yx,weget,

=tan1yx12log|1+y2x2|=logx+c=tan1yx12log|x2+y2x2|=logx+c=tan1yx12[log(x2+y2)logx2]=logx+c

=tan1yx12log(x2+y2)+12logx2=logx+c=tan1yx12log(x2+y2)+log(x2)12=logx+c=tan1yx12log(x2+y2)+logx=log+c=tan1yx=12log(x2+y2)+c

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

y1=x+yx=dydx=1+yx=f (yx)

Hence, the given D.E is homogenous.

Let,  y=vxyx=v, sothat, dydx=v+xdvdx

So, the D.E. becomes

v+xdvdx=1+vxdvdx=1dv=dxx

Integrating both sides,

dv=dxxv=log|x|+c

Putting v=yx back we get,

yx=log|x|+c

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx=x2+y2x2+x+y=x2(1+y2x2)x2(1+yx)=F(x,y)Then,F(λx,λy)=λ2x2λ2x2[1+λ2y2λ2x21+λyλx]=λ0F(x,y)=λ2F(x,y)

Hence, F(x,y) is a homogenous fxn of degree 2.

To solve it, let

y=vx,sothat,dydx=v.dxdx+xdvdxv=yxdydx=v+xdvdx

The D.E. now becomes,

v+xdvdx=1+v21+vxdvdx=1+v21+vv=1+v2vv21+v=1v1+v(1+v1v)dv=dxx

Integrating both sides,

1+v1vdv=dxx1+v1vdv=logx+c2(1v)1vdv=logx+c21vdv1dv=logx+c2log|1v|1v=logx+clog(1v)2+v=logxc

Put v=yx,

log(1yx)2+y2=logx+clog(xyx)2+logx=yxc

log[(xyx)2*x]=yxcxyx=eyxc=c1eyxc,where,c1e

(xy)2=c1.xeyx is the required solution of the D.E.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx=ex+ydydx=ex.eydyey=exdx

Integrating both sides,

dyey=exdxey1=ex+c1ey=exc1ey+ex=c, where, c=c1

 Option (A) is correct.

New answer posted

4 months ago

0 Follower 66 Views

V
Vishal Baghel

Contributor-Level 10

Let 'x' be the number of bacteria present in instantaneous time t.

Then, dxdtx

dxdt=kx,where,k= constant of proportionality.

dxx=kdt

Integrating both sides,

dxx=kdtlogx=kt+c

Given, at t=0,x=x0(say)then,

logx0=c(Initial,x0=100000)

So, the differential equation is

logx=kt+logx0logxlogx0=ktlogxx0=kt

As the bacteria number increased by 10% in 2 hours.

The number of bacteria increased in 2hours =10%*100000=10000

Hence, at t=2,

x=100000+10000=110000

So, log110000100000=2kk=12log(1110)

Hence, logxx0=[12log1110]*t

when,x=200000, then we get,

log200000100000=12log1110*t

2log2=log(1110)*tt=2log2log(1110)hours

New answer posted

4 months ago

0 Follower 20 Views

V
Vishal Baghel

Contributor-Level 10

Let P and t the principal and time respectively.

Then, increase in principal dPdt=P*5%

dPP=5100dt

Integrating both sides,

dPP=120dtlogP=t20+cP=et20+c

At, t=0, P=1000

So,  1000=e020+cec=1000

And at t=10,

P=e10100+c=e0.5.ecP=1.648*1000=1648

P = ?1648

New answer posted

4 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

Let P, r and t be the principal rate and time respectively.

Then, increase in principal dPdt=P*r%

dPdt=P.r100dPP=r100dt

Integrating both sides,

dPP=r100dtlogP=rt100+cP=ert100+c

Given at t=0,P=100

So, 100=er*0100+c

100=e0*ecec=100(?e0=1)

And at t=10,P=2*100=200

So, 200=er10100+c

200=er10.eeer10=200100=2

r10=log2r10=0.6931r=6.931

Hence, the rate is 6.931%

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Let 'r' and U be the radius and volume of the spherical balloon.

Then, dUdt=k, k = constant

ddt(43πr3)=k4πr2drdt=k4πr2dr=kdt

Integrating both sides,

4πr2dr=kdt43πr3=kt+c

Given at t = 0, r = 3

So, 4π(3)3 = c

C = 36π

And, at t=3, r=6

So, 43π(6)3=3k+36π(c=36π)

288π36π=3kk=252π3=84π

Hence, putting value of c and k in,

43πr3=kt+c , we get,

43πr3=84π.t+36πr3=34π(84π.t+36π)r3=63t+27r=[63t+27]13

New question posted

4 months ago

0 Follower 1 View

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The slope of tangent is dydx and slope of line joining line (-4,-3) and point say P(x,y)

y(3)x(4)=y+3x+4

So, dydx=2(y+3x+4)

dyy+3=2x+4dx

Integrating both sides,

dyy+3=2x+4dxlog|y+3|=2log|x+4|+log|c|log|y+3|=log(x+4)2+log|c|log|y+3|=log|c(x+4)2|y+3=c1(x+4)2,where,c1=±c

Since, the curve passes through (-2,1) we get,

y=1,at,x=21+3=c(2+4)24=c*4c=1

 The equation of the curve is y+3=(x+4)2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.