Maths NCERT Exemplar Solutions Class 11th Chapter Five
Get insights from 113 questions on Maths NCERT Exemplar Solutions Class 11th Chapter Five, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 11th Chapter Five
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
a month agoContributor-Level 9
I = ∫ (π/24 to 5π/24) dx/ (1+³√tan2x). Using King's rule.
2I = ∫ (π/24 to 5π/24) dx = 4π/24=π/6. I=π/12.
New answer posted
a month agoContributor-Level 9
dy/dx - 1 = xe^ (y-x). Let y-x=t. dt/dx = xe? e? dt=xdx.
-e? = x²/2+C. y (0)=0⇒t=0⇒-1=C.
-e^ (x-y) = x²/2-1. y=x-ln (1-x²/2).
y'=1+x/ (1-x²/2)=0 ⇒ x=-1. Min value at x=-1.
y (-1)=-1-ln (1/2) = -1+ln2. This differs from solution.
New answer posted
a month agoContributor-Level 9
Σ (1/a) (1-rb/a)? ¹ = (1/a)Σ (1+rb/a+r²b²/a²+.)
≈ (1/a)Σ (1+rb/a) = n/a + (b/a²)n (n+1)/2
Compare coeffs: α=1/a, β=b/2a². γ=b²/3a³. This differs from solution.
New answer posted
a month agoContributor-Level 9
sinx+sin4x + sin2x+sin3x = 0
2sin (5x/2)cos (3x/2) + 2sin (5x/2)cos (x/2) = 0
2sin (5x/2) [cos (3x/2)+cos (x/2)] = 0
4sin (5x/2)cosxcos (x/2)=0.
sin (5x/2)=0 ⇒ 5x/2=kπ ⇒ x=2kπ/5. x=0, 2π/5, 4π/5, 6π/5, 8π/5, 2π.
cosx=0 ⇒ x=π/2, 3π/2.
cos (x/2)=0 ⇒ x=π.
Sum = 9π.
New question posted
a month agoNew answer posted
a month agoContributor-Level 9
f' (x) = 12sin³xcosx+30sin²xcosx+12sinxcosx = 3sin2x (2sin²x+5sinx+2) = 3sin2x (2sinx+1) (sinx+2).
In [-π/6, π/2], sinx+2>0. 2sinx+1>0 except at x=-π/6. sin2x>0 for x∈ (0, π/2), <0 for x (-/6,0).
So f' (x)<0 on (-/6,0) (decreasing) and f' (x)>0 on (0, π/2) (increasing).
New answer posted
a month agoContributor-Level 9
gogog (3n+1)=gog (3n+2)=g (3n+3)=3n+1. So gogog=I.
If fog=f, then f must map range of g to values consistent with f.
There exists a one-one function f: N→N such that fog=f. e.g. f (x)=x.
New answer posted
a month agoContributor-Level 9
Vectors are coplanar. Determinant is zero. Row operations.
This leads to 2a=b+c.
New answer posted
a month agoContributor-Level 9
f (x) = ∫? [y]dy. For x∈ [n, n+1), [y]= [x]=n.
f (x) = Σ (k=0 to n-1) ∫? ¹ k dy + ∫? n dy = Σk + n (x-n).
f (x) is continuous at integers. f' (x)=n= [x]. Not differentiable at integers.
New answer posted
a month agoContributor-Level 9
S? = 3n/2 [2a+ (3n-1)d]. S? = 2n/2 [2a+ (2n-1)d].
S? =3S? ⇒ 3n/2 [2a+ (3n-1)d] = 3 (2n/2) [2a+ (2n-1)d].
2a+ (3n-1)d = 2 [2a+ (2n-1)d] ⇒ 2a+ (n-1)d=0.
S? /S? = (4n/2 [2a+ (4n-1)d]) / (2n/2 [2a+ (2n-1)d]) = 2 [- (n-1)d+ (4n-1)d]/ [- (n-1)d+ (2n-1)d] = 2 (3n)/ (n)=6.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers