Maths NCERT Exemplar Solutions Class 12th Chapter Three

Get insights from 162 questions on Maths NCERT Exemplar Solutions Class 12th Chapter Three, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 12th Chapter Three

Follow Ask Question
162

Questions

0

Discussions

3

Active Users

5

Followers

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

( 1 + i 1 i 0 )

A 2 = ( 1 + i 1 i 0 ) ( 1 + i 1 i 0 ) = ( i 1 + i 1 i i )

A 4 = ( i 1 + i 1 i i ) ( i 1 + i 1 i i ) = ( 1 0 0 1 )

A 5 = A

A9 = A

f o r n = 1 , 5 , 9 , . . . . . , 9 7

total possible values of n = 25

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

2 x 3 y = γ + 5 α x + 5 y = ( β + 1 ) } i n f i n i t e l y m a n y s o l u t i o n

2 α = 3 5 = ( γ + 5 β + 1 )

(i) 2 α = 3 5 = γ + 5 β + 1

α = 5 * 2 3 5x + 25 = -3β - 3

5 γ + 3 β = 2 8

| 9 α + 5 γ + 3 β | = | 9 * 1 0 3 2 8 |

= | 3 0 2 8 | = 5 8

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

S n = n 2 1 1 ( n + 1 ) 2 = n ( n + 1 ) 2 ( n + 2 ) = ( n + 1 ) 2 2 ( n + 1 ) + 2 2 ( n + 2 )

1 2 6 + n = 1 5 0 ( S n + 2 ( n + 1 ) ( n + 1 ) ) = 1 2 6 + n = 1 5 0 ( n + 1 ) 2 3 ( n + 1 ) + 2 + 2 ( 1 ( n + 1 ) 1 ( n + 2 ) )

= 1 2 6 + 4 5 5 2 5 3 * 1 3 2 5 + 2 * 5 0 + 2 ( 1 2 1 5 2 )

= 1 2 6 + 4 1 5 5 0 + 1 0 0 + 1 1 2 6 = 4 1 6 5 1

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l i m x 1 s i n ( 3 x 2 4 x + 1 ) x 2 + 1 2 x 3 7 x 2 + a x + b = 2

For this limit to be defined 2x3 – 7x2 + ax + b should also trend to 0 or x ® 1.

2 . ( 1 ) 3 7 ( 1 ) 2 + a 1 + b = 0

 2 – 7 + (a + b) = 0

(a + b) = 5 …………….(i)

Now this becomes % form  we apply L'lopital rule

l i m x 1 ( 3 x 2 4 x + 1 ) x 2 + 1 2 x 3 7 x 2 + a x + b = l i m x 1 c o s ( 3 x 2 4 x + 1 ) ( 6 x 4 ) 2 x 6 x 2 1 4 x + a

Now the numerator again ® 0 as x = 1

 6x2 – 14x + a ® 0 as x = 1

6 . (1)2 – 14 + a = 0

a = 8 …………….(ii)

a + b = 5  a b = 8 ( 3 ) = 1 1       

(b = -3) ® from (i) & (ii)

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

  x 2 + y 2 2 2 x 6 2 y + 1 4 = 0

 centre ( 2 , 3 2 )

radius  ( ( 2 ) 2 + ( 3 2 ) 2 1 4 ) 1 / 2

= ( 2 + 1 8 1 4 ) 1 / 2 = ( 6 )

( x 2 2 ) 2 + ( y 2 2 ) 2 = r 2

centre  ( 2 2 , 2 2 )

OA = ( 2 2 2 ) 2 + ( 2 2 3 2 ) 2 = 2 + 2 = 2                  

r2 = ( 6 ) 2 + ( 2 ) 2 = 6 + 4 = 1 0  

 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

1 7 i = 1 7 ( x i 6 2 ) 2 = 2 0 x ¯ = 6 2      


i = 1 7 ( x i 6 2 ) 2
= 140……………… (i)

 If any one student get less 50 marks then   ( x i 6 2 ) 2 1 4 4

but    i = 1 7 ( x i 6 2 ) 2 = 1 4 0

both condition cannot satisfy together hence no students fails.

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Any point on line L is

M (3r + 6, 2r + 1, 3r + 2)                                                          

P M r t o L          

3 ( 3 r + 5 ) + 2 ( 2 r 1 ) + 3 ( 3 r 1 ) = 0          

r = 5 1 1

 

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

cota = 1        & secβ =   5 3

< <        3 π 2  secβ =   5 3

α = ( π + π 4 )  cosβ = 3 5 = c o s ( 1 8 0 5 3 )  

tanb =  4 3  

tan(α + β) =   t a n α + t a n β 1 t a n α t a n β

A 1 4 & 4 t h q u a d r a n t .

= 1 4 3 1 + 4 3 = 1 7

1 4 & 4 t h q u a d r a n t .

               

               

               

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  a t o 3 i ^ + 1 2 j ^ + 2 k ^ a * ( 2 i ^ + k ^ ) = 2 i ^ 1 3 j ^ 4 k ^                           

a ( 3 i ^ + 1 2 j ^ + 2 k ^ ) = 0 ( x i + y j ^ + z k ^ ) * ( 2 i ^ + k ^ )                               

Let   a = ( x i ^ + y j ^ + 2 k ^ )

( x i ^ + y j ^ + z k ^ ) . ( 3 i ^ + 1 2 j ^ + 2 k ^ ) = 0 = | i j k x y z 2 0 1 |     

3 x + y 2 + 2 z = 0 = i ( y 0 ) j ( x 2 z ) + k ( x . 0 2 y )                            

4x – 12 = 0                                       y = 2

x

...more

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l i m n 6 t a n { r = 1 n t a n 1 ( 1 r 2 + 3 r + 3 ) }

= l i m n 6 t a n { r = 1 n t a n 1 ( ( r + 2 ) ( r + 1 ) 1 + ( r + 2 ) ( r + 1 ) ) }

= l i m n 6 t a n { r 2 t a n 1 ( 2 ) }

6 * 1 2 = 3

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.