Maths NCERT Exemplar Solutions Class 12th Chapter Three: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Three 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Three )

Payal Gupta
Updated on Jul 23, 2025 08:52 IST

By Payal Gupta, Retainer

Table of content
  • Matrices Long Answers Type Questions
  • Matrices Short Answers Type Questions
  • Matrices Objective Type Questions
  • Matrices Fill in the blanks Type Questions
  • Matrices True or False Type Questions
  • 24th June 2022 (second shift)
  • JEE Mains Solutions 2022,28th june , Maths,Second shift
View More
Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Long Answers Type Questions

Q1. If A B = B A  for any two square matrices, prove by mathematical induction that ( A B ) n = A n B n .

Sol. 

L e t P ( n ) : ( A B ) n = A n B n S t e p 1 : P u t n = 1 , P ( 1 ) : A B = A B w h i c h i s t r u e f o r n = 1 S t e p 2 : P u t n = k , P ( k ) : ( A B ) k = A k B k L e t i t b e t r u e f o r a n y k N S t e p 3 : P u t n = k + 1 , P ( k + 1 ) : ( A B ) k + 1 = A k + 1 B k + 1 L . H . S . ( A B ) k + 1 = ( A B ) k . A B = A k B k . A B [ F r o m s t e p 2 ] = A k + 1 A k + 1 R . H . S . H e n c e , i f P ( n ) i s t r u e f o r P ( k ) t h e n i t i s t r u e f o r P ( k + 1 ) .

Q2. Find  x  ,  y  , and  z  if:  A = [ 0 2 y z x y z x y z ]    satisfies  A T = A 1  .

Sol. 

Q&A Icon
Commonly asked questions
Q:  

If A B = B A  for any two square matrices, prove by mathematical induction that ( A B ) n = A n B n .

Q:  

Find x , y , and z if: A=[02yzxyzxyz]  satisfies AT=A1 .

Q:  

If possible, using elementary row transformations, find the inverse of the following matrices:

(i) [213531323]

(ii) [233122111]

(iii) [201510013]

Read more
Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Short Answers Type Questions

Q1. If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

Sol. T h e p o s s i b l e o r d e r s t h a t a m a t r i x h a v i n g 2 8 e l e m e n t s a r e { 2 8 × 1 , 1 × 2 8 , 2 × 1 4 , 1 4 × 2 , 4 × 7 , 7 × 4 } . T h e p o s s i b l e o r d e r s o f a m a t r i x h a v i n g 1 3 e l e m e n t s a r e { 1 × 1 3 , 1 3 × 1 } .

Q2. In the matrix write:

(i) The order of the matrix .

(ii) The number of elements.

(iii) Write elements a 2 3 , a 3 1 , a 1 2 .

Sol.

( i ) T h e o r d e r o f t h e g i v e n m a t r i x A i s 3 × 3 ( i i ) T h e n u m b e r o f e l e m e n t s i n a m a t r i x A = 3 × 3 = 9 ( i i i ) a i j = t h e e l e m e n t s o f i t h r o w a n d j t h c o l u m n . S o , a 2 3 = x 2 y , a 3 1 = 0 , a 1 2 = 1 .

Q&A Icon
Commonly asked questions
Q:  

If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

Q:  

In the matrix write:

(i) The order of the matrix .

(ii) The number of elements.

(iii) Write elements a 2 3 , a 3 1 , a 1 2 .

Read more
Q:  

Construct a2 × 2 matrix where

(i) a i j = ( i 2 j ) 2 2 .
(ii) a i j = ? 2 i + 3 j ?
.

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Objective Type Questions

Choose the correct answer from the given four options in each of the Exercises 1 to 15:

Q1. The matrix   P = [ 0 0 4 0 4 0 4 0 0 ] is a

(A) square matrix

(B) diagonal matrix

(C) unit matrix

(D) none

Sol:

G i v e n t h a t A = [ 0 0 4 0 4 0 4 0 0 ] H e r e , n u m b e r o f c o l u m n s a n d t h e n u m b e r o f r o w s a r e e q u a l i . e . , 3 . S o , A i s a s q u a r e m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q2. Total number of possible matrices of order 3 × 3  with each entry 2 or 0 is

(A) 9

(B) 27

(C) 81

(D) 512

Sol:

T o t a l n u m b e r o f p o s s i b l e m a t r i c e s o f o r d e r 3 × 3 w i t h e a c h e n t r y 0 o r 2 = 2 3 × 3 = 2 9 = 5 1 2 . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q3. If [ 2 x + y 4 x 5 x 7 4 x ] = [ 7 7 y 1 3 y x + 6 ] ,   then the value of x + y is

(A) x = 3 , y = 1

(B) x = 2 , y = 3

(C) x = 2 , y = 4

(D) x = 3 , y = 3

Sol:

G i v e n t h a t : [ 2 x + y 4 x 5 x 7 4 x ] = [ 7 7 y 1 3 y x + 6 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t , 2 x + y = 7 ( i ) a n d 4 x = 7 y 1 3 ( i i ) f r o m e q n . ( i i ) 4 x x = 6 3 x = 6 x = 2 f r o m e q n . ( i ) 2 × 2 + y = 7 4 + y = 7 y = 7 4 = 3 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q4. If A = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] , B = 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( x π ) ] ,   then A B  is equal to:

Sol:

G i v e n t h a t : A = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] a n d B = 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( π x ) ] A B = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( π x ) ] = 1 π [ s i n 1 ( x π ) + c o s 1 ( x π ) t a n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) + t a n 1 ( π x ) ] = 1 π [ π 2 0 0 π 2 ] [ s i n 1 x + c o s 1 x = π 2 t a n 1 x + c o t 1 x = π 2 ] = 1 π × π 2 [ 1 0 0 1 ] = 1 2 I H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q5. If  A  and  B  are two matrices of the order  3 × m  and  3 × n  , respectively, and  m = n  , then the order of the matrix  ( 5 A 2 B )  is

(A) m × 3

(B) 3 × 3

(C) m × n

(D) 3 × n

Sol:

A s w e k n o w t h a t t h e a d d i t i o n a n d s u b t r a c t i o n o f t w o m a t r i c e s i s o n l y p o s s i b l e w h e n t h e y h a v e s a m e o r d e r . I t i s a l s o g i v e n t h a t m = n . O r d e r o f ( 5 A 2 B ) i s 3 × n . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q6. If  A = [ 1 0 0 1 ]  , then  A 2  is equal to

(A) [ 1 0 0 1 ]

(B) [ 1 0 1 0 ]

(C) [ 0 1 0 1 ]

(D) [ 1 0 0 1 ]

Sol:

G i v e n t h a t A = [ 0 1 1 0 ] A 2 = A . A = [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 0 + 1 0 + 0 0 + 0 1 + 0 ] = [ 1 0 0 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q7. If matrix A = [ a i j ] 2 × 2 , where a i j = 1  if i j

if i = j  ,then  A 2 is equal to

(A) I

(B) A

(C) 0

(D) None of these

Sol:

G i v e n t h a t A = [ a i j ] 2 × 2 L e t A = [ a 1 1 a 1 2 a 2 1 a 2 2 ] 2 × 2 a 1 1 = 0 [ i = j ] a 1 2 = 1 [ i j ] a 2 1 = 1 [ i j ] a 2 2 = 0 [ i = j ] A = [ 0 1 1 0 ] N o w , A 2 = A . A = [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 0 + 1 0 + 0 0 + 0 1 + 0 ] = [ 1 0 0 1 ] = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q8.The matrix [ 1 0 0 0 2 0 0 0 4 ]  is a

(A) Identity matrix

(B) Symmetric matrix

(C) Skew symmetric matrix

(D) None of these

Sol:

L e t A = [ 1 0 0 0 2 0 0 0 4 ] A ' = [ 1 0 0 0 2 0 0 0 4 ] = A A ' = A , s o A i s a s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q9. The matrix [ 0 5 8 5 0 1 2 8 1 2 0 ]  is a

(A) Diagonal matrix

(B) Symmetric matrix

(C) Skew symmetric matrix

(D) Scalar matrix

Sol:

L e t A = [ 0 5 8 5 0 1 2 8 1 2 0 ] A ' = [ 0 5 8 5 0 1 2 8 1 2 0 ] A ' = [ 0 5 8 5 0 1 2 8 1 2 0 ] = A A ' = A , s o A i s a s k e w s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q10. If A  is a matrix of order m × n  and B  is a matrix such that A B  and B A  are both defined, then the order of matrix B  is

(A) m × m

(B) n × n

(C) n × m

(D) m × n

Sol:

O r d e r o f m a t r i x A = m × n L e t o r d e r o f m a t r i x B b e K × P I f A B ' i s d e f i n e d t h e n t h e o r d e r o f A B ' i s m × K i f n = P I f B ' A i s d e f i n e d t h e n t h e o r d e r o f B ' A i s P × n w h e n K = m N o w , o r d e r o f B ' = P × K o r d e r o f B ' = K × P = m × n [ K = m , P = n ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q11. If A  and B are matrices of the same order, then A B B A  is a

(A) Skew symmetric matrix

(B) Null matrix

(C) Symmetric matrix

(D) Unit matrix

Sol:

L e t P = ( A B ' B A ' ) P ' = ( A B ' B A ' ) ' = ( A B ' ) ' ( B A ' ) ' = ( B ' ) ' A ' ( A ' ) ' B ' [ ( A B ) ' = B ' A ' ] = B A ' A B ' = ( A B ' B A ' ) = P P ' = P , s o i t i s a s k e w s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q12. If A  is a square matrix such that A 2 = I , then ( A I ) 3 + ( A + I ) 3 7 A  is equal to

(A) A

(B) I - A

(C) I + A

(D) 3A

Sol:

( A I ) 3 + ( A + I ) 3 7 A = A 3 I 3 3 A 2 I + 3 A I 2 + A 3 + I 3 + 3 A 2 I + 3 A I 2 7 A = 2 A 3 + 6 A I 2 7 A = 2 A . A 2 + 6 A I 7 A = 2 A I + 6 A I 7 A [ A 2 = I ] = 8 A I 7 A = 8 A 7 A = A H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q13. For any two matrices A  and B , we have

(A) AB = BA

(B) AB AB BA BA

(C) AB = O

(D) None of the above

Sol:

W e k n o w t h a t f o r a n y t w o m t r i c e s A a n d B , w e m a y h a v e A B = B A , A B B A a n d A B = 0 , b u t i t i s n o t a l w a y s t r u e . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q14. On using elementary column operations C 2 C 2 2 C 1  in the following matrix equation:   [ 1 3 2 4 ] = [ 1 1 0 1 ] [ 3 1 2 4 ] ,  we have:

(A) [ 1 5 0 4 ] = [ 1 1 2 2 ] [ 3 5 2 0 ]

(B) [ 1 5 0 4 ] = [ 1 1 0 1 ] [ 3 5 0 2 ]

(C) [ 1 5 2 0 ] = [ 1 3 0 1 ] [ 3 1 2 4 ]

(D) [ 1 5 2 0 ] = [ 1 1 0 1 ] [ 3 5 2 0 ]

Sol:

G i v e n t h a t : [ 1 3 2 4 ] = [ 1 1 0 1 ] [ 3 1 2 4 ] Using C 2 C 2 2 C 1 , w e g e t [ 1 5 2 0 ] = [ 1 1 0 1 ] [ 3 5 2 0 ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q15. On using elementary row operation R 1 R 1 3 R 2  in the following matrix equation:

[ 4 2 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ] ,  we have:

(A) [ 5 7 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ]

(B) [ 5 7 3 3 ] = [ 1 2 0 3 ] [ 1 3 1 1 ]

(C) [ 5 7 3 3 ] = [ 1 2 1 7 ] [ 2 0 1 7 ]

(D) [ 4 2 5 7 ] = [ 1 2 3 3 ] [ 2 0 1 1 ]

Sol:

W e h a v e , [ 4 2 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ] Using e l e m e n t a r y r o w t r a n s f o r m a t i o n R 1 R 1 3 R 2 , w e g e t [ 5 7 3 3 ] = [ 1 7 0 3 ] [ 2 0 1 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q&A Icon
Commonly asked questions
Q:  

The matrix   P = [ 0 0 4 0 4 0 4 0 0 ] is a

(A) Square matrix

(B) Diagonal matrix

(C) Unit matrix

(D) None

Q:  

Total number of possible matrices of order 3 × 3  with each entry 2 or 0 is

(A) 9

(B) 27

(C) 81

(D) 512

Read more
Q:  

If [ 2 x + y 4 x 5 x 7 4 x ] = [ 7 7 y 1 3 y x + 6 ] ,   then the value of x + y is

(A) x = 3 , y = 1

(B) x = 2 , y = 3

(C) x = 2 , y = 4

(D) x = 3 , y = 3

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Fill in the blanks Type Questions

Q1. ___ matrix is both symmetric and skew symmetric matrix.

Sol.

N u l l m a t r i x i . e . [ 0 0 0 0 ] o r [ 0 0 0 0 0 0 0 0 0 ] i s b o t h s y m m e t r i c a n d s k e w s y m m e t r i c m a t r i x .

Q2. Sum of two skew symmetric matrices is always ___ matrix.

Sol.

L e t A a n d B b e a n y t w o m a t r i c e s F o r s k e w s y m m e t r i c m a t r i c e s A = A ' ( i ) a n d B = B ' ( i i ) A d d i n g ( i ) a n d ( i i ) w e g e t A + B = A ' B ' A + B = ( A ' + B ' ) , s o A + B i s s k e w s y m m e t r i c m a t r i x . H e n c e , t h e s u m o f t w o s k e w s y m m e t r i c m a t r i c e s i s a l w a y s s k e w s y m m e t r i c m a t r i c e s .

Q3. The negative of a matrix is obtained by multiplying it by ___.

Sol.

L e t A b e a m a t r i x A = 1 . A H e n c e , n e g a t i v e o f a m a t r i x i s o b t a i n e d b y m u l t i p l y i n g i t b y 1 .

Q4. The product of any matrix by the scalar ___ is the null matrix.

Sol.

L e t A b e a n y m a t r i x 0 . A = A . 0 H e n c e , t h e p r o d u c t o f a n y m a t r i x i s b y t h e r s c a l a r 0 i s t h e n u l l m a t r i x .

Q5. A matrix which is not a square matrix is called a ___ matrix.

Sol.

A m a t r i x w h i c h i s n o t a s q u a r e m a t r i x i s c a l l e d a rectangular m a t r i x .

Q6. Matrix multiplication is ___ over addition.

Sol:   

M a t r i x m u l t i p l i c a t i o n i s d i s t r i b u t i v e o v e r a d d i t i o n . L e t A , B , a n d C b e a n y m a t r i c e s . S o , ( i ) A ( B + C ) = A B + A C ( i i ) ( A + B ) C = A C + B C

Q7. If A  is a symmetric matrix, then A 3  is a ___ matrix.

Sol. 

L e t A b e a s y m m e t r i c m a t r i x A ' = A ( A 3 ) ' = ( A ' ) 3 = A 3 [ ( A ' ) k = ( A k ) ' ] H e n c e , i f A i s a s y m m e t r i c m a t r i x , t h e n A 3 i s a s y m m e t r i c m a t r i x .

Q8. If A  is a skew symmetric matrix, then A 2  is a ___.

Sol. 

I f A i s a s k e w s y m m e t r i c m a t r i x , A ' = A ( A 2 ) ' = ( A ' ) 2 = ( A ) 2 = A 2 H e n c e , A 2 i s a s y m m e t r i c m a t r i x .

Q9. If A  and B are square matrices of the same order, then

(i) ( A B ) ' =    ___.
(ii) ( k A ) ' =
 ___ (k is any scalar).
(iii) [ k ( A B ) ] ' =
 ___.

Sol. 

( i ) ( A B ) ' = B ' A ' ( i i ) ( k A ) ' = k . A ' ( i i i ) [ k ( A B ) ] ' = k ( A B ) ' = k ( A ' B ' )

Q10. If A  is skew symmetric, then k A  is a ___ (k is any scalar).

Sol. 

I f A i s a s k e w s y m m e t r i c m a t r i x A ' = A ( k A ) ' = k A ' = k ( A ) = k A H e n c e , k A i s a s k e w s y m m e t r i c m a t r i x .

Q11. If A  and B are symmetric matrices, then

(i) A B B A  is a ___.

(ii) B A 2 A B is a ___.

Sol. 

( i ) L e t P = ( A B B A ) P ' = ( A B B A ) ' = ( A B ) ' ( B A ) ' = B ' A ' A ' B ' [ ( A B ) ' = B ' A ' ] = B A A B [ A ' = A a n d B ' = B ] = ( A B B A ) = P H e n c e , ( A B B A ) i s a s k e w s y m m e t r i c m a t r i x . ( i i ) L e t Q = ( B A 2 A B ) Q ' = ( B A 2 A B ) ' = ( B A ) ' ( 2 A B ) ' = A ' B ' 2 ( A B ) ' [ ( k A ) ' = k A ' ] = A ' B ' 2 B ' A ' = A B 2 B A [ A ' = A a n d B ' = B ] = ( 2 B A A B ) H e n c e , ( B A 2 A B ) i s n e i t h e r a s y m m e t r i c m a t r i x n o r a s k e w s y m m e t r i c m a t r i x .

Q12. If A  is symmetric matrix, then B A B  is ___.

Sol. 

I f A i s a s y m m e t r i c m a t r i x A ' = A L e t P = B ' A B P ' = ( B ' A B ) ' = B ' A ' ( B ' ) ' [ ( A B ) ' = B ' A ' ] = B ' A B [ A ' = A a n d ( B ' ) ' = B ] P ' = P S o , P i s a s y m m e t r i c m a t r i x . H e n c e , B ' A B i s a s y m m e t r i c m a t r i x .

Q13. If A  and B are symmetric matrices of same order, then A B  is symmetric if and only if ___.

Sol. 

( i ) G i v e n t h a t A ' = A a n d B ' = B L e t P = A B P ' = ( A B ) ' = B ' A ' = B A [ A ' = A a n d B ' = B ] = P H e n c e , A B i s s y m m e t r i c i f a n d o n l y i f A B = B A .

Q14. In applying one or more row operations while finding A 1  by elementary row operations, we obtain all zeros in one or more rows, then A 1 ___.

Sol. 

A 1 d o e s n o t e x i s t i f w e a p p l y o n e o r m o r e r o w o p e r a t i o n s w h i l e f i n d i n g A 1 b y e l e m e n t a r y r o w o p e r a t i o n s , o b t a i n a l l z e r o e s i n o n e o r m o r e r o w s .

Q&A Icon
Commonly asked questions
Q:  

___ matrix is both symmetric and skew symmetric matrix.

Q:  

Sum of two skew symmetric matrices is always ___ matrix.

Q:  

The negative of a matrix is obtained by multiplying it by ___.

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices True or False Type Questions

Q1. A matrix denotes a number.

Sol. 

F a l s e . A m a t r i x i s a n a r r a y o f e l e m e n t s , n u m b e r s o r f u n c t i o n s h a v i n g r o w s a n d c o l u m n s .

Q2. Matrices of any order can be added.

Sol. 

F a l s e . T h e m a t r i c e s h a v i n g s a m e o r d e r c a n o n l y b e a d d e d .

Q3. Two matrices are equal if they have the same number of rows and the same number of columns.

Sol. 

F a l s e . T h e t w o m a t r i c e s a r e s a i d t o b e e q u a l i f t h e i r c o r r e s p o n d i n g e l e m e n t s a r e s a m e .

Q4. Matrices of different orders cannot be subtracted

Sol. 

T r u e . F o r a d d i t i o n a n d s u b t r a c t i o n , t h e o r d e r o f t w o m a t r i c e s s h o u l d b e s a m e .

Q5. Matrix addition is associative as well as commutative.

Sol. 

T r u e . I f A , B a n d C a r e t h e m a t r i c e s o f a d d i t i o n t h e n A + ( B + C ) = ( A + B ) + C ( a s s o c i a t i v e ) A + B = B + A ( c o m m u t a t i v e )

Q6. Matrix multiplication is commutative.

Sol. 

F a l s e . Since A B B A i f A B a n d B A a r e w e l l d e f i n e d .

Q7. A square matrix where every element is unity is called an identity matrix.

Sol. 

F a l s e . Since, i n a n i d e n t i t y m a t r i x a l l t h e e l e m e n t s o f p r i n c i p a l d i a g o n a l a r e u n i t y r e s t a r e z e r o . e . g . , A = [ 1 0 0 0 1 0 0 0 1 ] = I 3

Q8. If A  and B  are two square matrices of the same order, then A + B = B + A .

Sol. 

T r u e . I f A a n d B a r e s q u a r e m a t r i c e s o f t h e n t h e i r a d d i t i o n i s c o m m u t a t i v e i . e . , A + B = B + A

Q9. If A  and B are two matrices of the same order, then A B = B A   .

Sol. 

F a l s e . Since s u b t r a c t i o n s o f a n y t w o m a t r i c e s o f t h e s a m e o r d e r i s n o t c o m m u t a t i v e i . e . , A B B A

Q10. If matrix A B = O , then A = O or B = O  or both A  and B  are null matrices.

Sol. 

F a l s e . Since f o r a n y t w o n o n z e r o m a t r i c e s A a n d B , w e m a y g e t A B = 0 .

Q11. Transpose of a column matrix is a column matrix.

Sol. 

Q12. If A  and B are two square matrices of the same order, then A B = B A .

Sol. 

F a l s e . F o r t w o s q u a r e m a t r i c e s A a n d B , A B = B A i s n o t a l w a y s t r u e .

Q13. If each of the three matrices of the same order is symmetric, then their sum is a symmetric matrix.

Sol. 

T r u e . L e t A , B , a n d C b e t h r e e m a t r i c e s o f t h e s a m e o r d e r . G i v e n t h a t A ' = A , B ' = B , a n d C ' = C L e t P = A + B + C P ' = ( A + B + C ) ' = A ' + B ' + C ' = A + B + C = P S o , A + B + C i s a l s o a s y m m e t r i c m a t r i x .

Q14. If A  and B  are any two matrices of the same order, then ( A B ) ' = A B .

Sol. 

F a l s e . Since ( A B ) ' = B ' A ' .

Q15. If  ( A B ) ' = B A  , where  A  and  B  are not square matrices, then the number of rows in  A  is equal to the number of columns in  B  and the number of columns in  A  is equal to the number of rows in  B  .

Sol. 

T r u e . L e t A = [ a i j ] m × n a n d B = [ b i j ] p × q A B i s d e f i n e d w h e n n = P O r d e r o f A B = m × q O r d e r o f ( A B ) ' = q × m O r d e r o f B ' i s q × p a n d o r d e r o f A ' i s n × m B ' A ' i s d e f i n e d w h e n P = n a n d t h e o r d e r o f B ' A ' i s q × m H e n c e , O r d e r o f ( A B ) ' = O r d e r o f B ' A ' i . e . , q × m .

 Q16. If  A  ,  B  , and  C  are square matrices of the same order, then  A B = A C  always implies that  B = C  .

Sol. 

F a l s e . A = [ 1 0 0 0 ] , B = [ 0 0 2 0 ] a n d C = [ 0 0 3 4 ] A B = [ 1 0 0 0 ] [ 0 0 2 0 ] = [ 0 0 0 0 ] A C = [ 1 0 0 0 ] [ 0 0 3 4 ] = [ 0 0 0 0 ] H e r e A B = A C = 0 b u t B C .

Q17. A A  is always a symmetric matrix for any matrix A .

Sol. 

T r u e . L e t P = A A ' P ' = ( A A ' ) ' = ( A ' ) ' . A ' [ ( A B ) ' = B ' A ' ] = A A ' = P S o , P i s a s y m m e t r i c m a t r i x . H e n c e , A A ' i s a l w a y s a s y m m e t r i c m a t r i x .

Q18. If  then A B   and B A  are defined and equal.

Sol. 

Q19. If A  is a skew symmetric matrix, then A 2  is a symmetric matrix.

Sol. 

T r u e . ( A 2 ) ' = ( A ' ) 2 = [ A ] 2 [ A ' = A ] = A 2 S o , A 2 i s a s y m m e t r i c m a t r i x .

Q20. ( A B ) 1 = A 1 B 1 , where A  and B are invertible matrices satisfying the commutative property with respect to multiplication.

Sol. 

T r u e . I f A a n d B a r e i n v e r t i b l e m a t r i c e s o f t h e s a m e o r d e r . ( A B ) 1 = ( B A ) 1 [ A B = B A ] B u t ( A B ) 1 = A 1 B 1 [ G i v e n ] ( B A ) 1 = B 1 A 1 A 1 B 1 = B 1 A 1 A a n d B s a t i s f y c o m m u t a t i v e p r o p e r t y w . r . t m u l t i p l i c a t i o n .

Q&A Icon
Commonly asked questions
Q:  

A matrix denotes a number.

Q:  

Matrices of any order can be added.

Q:  

Matrices of different orders cannot be subtracted

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

24th June 2022 (second shift)

24th June 2022 (second shift)

Q&A Icon
Commonly asked questions
Q:  

Let x * y = x2 + y3 and (x * 1) * 1 = x * (1 * 1). Then a value of 2 s i n 1 ( x 4 + x 2 2 x 4 + x 2 + 2 )  is.

Read more
Q:  

The sum of all the real roots of the equation (e2x4)(6e2x5ex+1)=0is

Q:  

Let the system of linear equations

x + y + αz=2

3x + y + z = 4

x + 2z = 1

have a unique solution (x,y,z). If (α,x),(y,α)and(x,y) are collinear points, then the sum of absolute values of all possible values of α is

Read more
Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

JEE Mains Solutions 2022,28th june , Maths,Second shift

JEE Mains Solutions 2022,28th june , Maths,Second shift

Q&A Icon
Commonly asked questions
Q:  

Let R1 = { ( a , b ) N × N : | a b | 1 3 } a n d  

R2 =   { ( a , b ) N × N : | a b | 1 3 } . Then on N :

Read more
Q:  

let f(x) be a quadratic polynomial such that f(-2) + f(3) = 0. If one of the roots of f(x) = 0 is -1, then the sum of the roots of f(x) = 0 is equal to:

Read more
Q:  

The number of ways to distribute 30 identical candies among four children C1, C2, C3 and C4 so that C2 receives atleast 4 and atmost 7 candies, C3 receives atleast 2 and atmost 6 candies, is equal to:

Read more
qna

Maths NCERT Exemplar Solutions Class 12th Chapter Three Exam

Student Forum

chatAnything you would want to ask experts?
Write here...