Maths NCERT Exemplar Solutions Class 12th Chapter Three: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter Three 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter Three )

Payal Gupta
Updated on Jul 23, 2025 08:52 IST

By Payal Gupta, Retainer

Table of content
  • Matrices Long Answers Type Questions
  • Matrices Short Answers Type Questions
  • Matrices Objective Type Questions
  • Matrices Fill in the blanks Type Questions
  • Matrices True or False Type Questions
  • 24th June 2022 (second shift)
  • JEE Mains Solutions 2022,28th june , Maths,Second shift
View More
Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Long Answers Type Questions

Q1. If A B = B A  for any two square matrices, prove by mathematical induction that ( A B ) n = A n B n .

Sol. 

L e t P ( n ) : ( A B ) n = A n B n S t e p 1 : P u t n = 1 , P ( 1 ) : A B = A B w h i c h i s t r u e f o r n = 1 S t e p 2 : P u t n = k , P ( k ) : ( A B ) k = A k B k L e t i t b e t r u e f o r a n y k N S t e p 3 : P u t n = k + 1 , P ( k + 1 ) : ( A B ) k + 1 = A k + 1 B k + 1 L . H . S . ( A B ) k + 1 = ( A B ) k . A B = A k B k . A B [ F r o m s t e p 2 ] = A k + 1 A k + 1 R . H . S . H e n c e , i f P ( n ) i s t r u e f o r P ( k ) t h e n i t i s t r u e f o r P ( k + 1 ) .

Q2. Find  x  ,  y  , and  z  if:  A = [ 0 2 y z x y z x y z ]    satisfies  A T = A 1  .

Sol. 

Q&A Icon
Commonly asked questions
Q:  

If A B = B A  for any two square matrices, prove by mathematical induction that ( A B ) n = A n B n .

A: 

This is a Long Answers Type Questions as classified in NCERT Exemplar

Sol. 

L e t P ( n ) : ( A B ) n = A n B n S t e p 1 : P u t n = 1 , P ( 1 ) : A B = A B w h i c h i s t r u e f o r n = 1 S t e p 2 : P u t n = k , P ( k ) : ( A B ) k = A k B k L e t i t b e t r u e f o r a n y k N S t e p 3 : P u t n = k + 1 , P ( k + 1 ) : ( A B ) k + 1 = A k + 1 B k + 1 L . H . S . ( A B ) k + 1 = ( A B ) k . A B = A k B k . A B [ F r o m s t e p 2 ] = A k + 1 A k + 1 R . H . S . H e n c e , i f P ( n ) i s t r u e f o r P ( k ) t h e n i t i s t r u e f o r P ( k + 1 ) .

Q:  

Find x , y , and z if: A=[02yzxyzxyz]  satisfies AT=A1 .

A: 

This is a Long Answers Type Questions as classified in NCERT Exemplar

Sol. 

Q:  

If possible, using elementary row transformations, find the inverse of the following matrices:

(i) [213531323]

(ii) [233122111]

(iii) [201510013]

Read more
A: 

This is a Long Answers Type Questions as classified in NCERT Exemplar

Sol. 

Q:  

Express the matrix [ 2   3 1 1 1 2 4 1 2 ] as the sum of a symmetric and a skew-symmetric matrix.

A: 

This is a long answer type question as classified in NCERT Exemplar

Weknowthatanysquarematrixcanbeexpressedasthesumofsymmetricandskewsymmetricmatrixi.e. A = 1 2 [ A + A ' ] + 1 2 [ A A ' ] S o P = 1 2 [ ( 2 3 1 1 1 2 4 1 2 ) + ( 2 1 4 3 1 1 1 2 2 ) ] = 1 2 [ 2 + 2 3 + 1 1 + 4 1 + 3 1 1 2 + 1 4 + 1 1 + 2 2 + 2 ] = 1 2 [ 4 4 5 4 2 3 5 3 4 ] = [ 2 2 5 2 2 1 3 2 5 2 3 2 2 ] P ' = [ 2 2 5 2 2 1 3 2 5 2 3 2 2 ] = P A s P ' = P P i s a s y m m e t r i c m a t r i x . N o w , Q = 1 2 [ A A ' ] = 1 2 [ ( 2 3 1 1 1 2 4 1 2 ) ( 2 1 4 3 1 1 1 2 2 ) ] = 1 2 [ 2 2 3 1 1 4 1 3 1 + 1 2 1 4 1 1 2 2 2 ] = 1 2 [ 0 2 3 2 0 1 3 1 0 ] = [ 0 1 3 2 1 0 1 2 3 2 1 2 0 ] = [ 0 1 3 2 1 0 1 2 3 2 1 2 0 ] = Q A s Q = Q Q i s a s k e w s y m m e t r i c m a t r i x . S o A = P + Q A = [ 2 2 5 2 2 1 3 2 5 2 3 2 2 ] + [ 0 1 3 2 1 0 1 2 3 2 1 2 0 ] = [ 2 + 0 2 + 1 5 2 3 2 2 1 1 + 0 3 2 + 1 2 5 2 + 3 2 3 2 &min

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Short Answers Type Questions

Q1. If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

Sol. T h e p o s s i b l e o r d e r s t h a t a m a t r i x h a v i n g 2 8 e l e m e n t s a r e { 2 8 × 1 , 1 × 2 8 , 2 × 1 4 , 1 4 × 2 , 4 × 7 , 7 × 4 } . T h e p o s s i b l e o r d e r s o f a m a t r i x h a v i n g 1 3 e l e m e n t s a r e { 1 × 1 3 , 1 3 × 1 } .

Q2. In the matrix write:

(i) The order of the matrix .

(ii) The number of elements.

(iii) Write elements a 2 3 , a 3 1 , a 1 2 .

Sol.

( i ) T h e o r d e r o f t h e g i v e n m a t r i x A i s 3 × 3 ( i i ) T h e n u m b e r o f e l e m e n t s i n a m a t r i x A = 3 × 3 = 9 ( i i i ) a i j = t h e e l e m e n t s o f i t h r o w a n d j t h c o l u m n . S o , a 2 3 = x 2 y , a 3 1 = 0 , a 1 2 = 1 .

Q&A Icon
Commonly asked questions
Q:  

If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

A: 

This is a short answer type question as classified in NCERT Exemplar

T h e p o s s i b l e o r d e r s t h a t a m a t r i x h a v i n g 2 8 e l e m e n t s a r e { 2 8 × 1 , 1 × 2 8 , 2 × 1 4 , 1 4 × 2 , 4 × 7 , 7 × 4 } . T h e p o s s i b l e o r d e r s o f a m a t r i x h a v i n g 1 3 e l e m e n t s a r e { 1 × 1 3 , 1 3 × 1 } .

Q:  

In the matrix write:

(i) The order of the matrix .

(ii) The number of elements.

(iii) Write elements a 2 3 , a 3 1 , a 1 2 .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

( i ) T h e o r d e r o f t h e g i v e n m a t r i x A i s 3 × 3 ( i i ) T h e n u m b e r o f e l e m e n t s i n a m a t r i x A = 3 × 3 = 9 ( i i i ) a i j = t h e e l e m e n t s o f i t h r o w a n d j t h c o l u m n . S o , a 2 3 = x 2 y , a 3 1 = 0 , a 1 2 = 1 .

Q:  

Construct a2 × 2 matrix where

(i) a i j = ( i 2 j ) 2 2 .
(ii) a i j = ? 2 i + 3 j ?
.

A: 

This is a short answer type question as classified in NCERT Exemplar

L e t A = [ a 1 1 a 1 2 a 2 1 a 2 2 ] 2 × 2 ( i ) G i v e n t h a t a i j = ( i 2 j ) 2 2 a 1 1 = ( 1 2 × 1 ) 2 2 = 1 2 ; a 1 2 = ( 1 2 × 2 ) 2 2 = 9 2 a 2 1 = ( 2 2 × 1 ) 2 2 = 0 ; a 2 2 = ( 2 2 × 2 ) 2 2 = 2 H e n c e , t h e m a t r i x A = [ 1 2 9 2 0 2 ] ( i i ) G i v e n t h a t a i j = | 2 i + 3 j | a 1 1 = | 2 × 1 + 3 × 1 | = 1 ; a 1 2 = | 2 × 1 + 3 × 2 | = 4 a 2 1 = | 2 × 2 + 3 × 1 | = 1 ; a 2 2 = | 2 × 2 + 3 × 2 | = 2 H e n c e , t h e m a t r i x A = [ 1 4 1 2 ]

Q:  

Construct a 3 × 2  matrix whose elements are given by a i j = e i x s i n ( j x ) .

A: 

This is a short answer type question as classified in NCERT Exemplar

L e t A = [ a 1 1 a 1 2 a 2 1 a 2 2 a 3 1 a 3 2 ] 3 × 2 G i v e n t h a t a i j = e i x s i n j x a 1 1 = e x s i n x a 1 2 = e x s i n 2 x a 2 1 = e 2 x s i n x a 2 2 = e 2 x s i n 2 x a 3 1 = e 3 x s i n x a 3 2 = e 3 x s i n 2 x H e n c e , t h e m a t r i x A = [ e x s i n x e x s i n 2 x e 2 x s i n x e 2 x s i n 2 x e 3 x s i n x e 3 x s i n 2 x ]

Q:  

Find values of a  and b  if A = B , where A = [ a + 4 3 b 8 6 ] , B = [ 2 a + b b 2 + 2 8 b 2 5 b ]

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A = B [ a + 4 3 b 8 6 ] = [ 2 a + 2 b 2 + 2 8 b 2 5 b ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t a + 4 = 2 a + 2 , 3 b = b 2 + 2 a n d b 2 5 b = 6 2 a a = 2 , b 2 3 b + 2 = 0 , b 2 5 b + 6 = 0 a = 2 b 2 3 b + 2 = 0 b 2 5 b + 6 = 0 b 2 2 b b + 2 = 0 , b 2 3 b 2 b + 6 = 0 b ( b 2 ) 1 ( b 2 ) = 0 , b ( b 3 ) 2 ( b 3 ) = 0 ( b 1 ) ( b 2 ) = 0 , ( b 2 ) ( b 3 ) = 0 b = 1 , 2 b = 2 , 3 b u t h e r e 2 i s c o m m o n . H e n c e , t h e v a l u e o f a = 2 a n d b = 2 .

Q:  

If possible, find the sum of the matrices A  and B , where 

A: 

This is a short answer type question as classified in NCERT Exemplar

T h e o r d e r o f m a t r i x A = 2 × 2 a n d t h e o r d e r o f m a t r i x B = 2 × 3 . A d d i t i o n o f m a t r i c e s i s o n l y p o s s i b l e w h e n t h e y h a v e s a m e o r d e r . S o , A + B i s n o t p o s s i b l e .

Q:  

If find:

(i) X + Y .

(ii) 2 X 3 Y .

(iii) A matrix Z  such that X + Y + Z  is a zero matrix.

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t X = [ 3 1 1 5 2 3 ] a n d Y = [ 2 1 1 7 2 4 ] ( i ) X + Y = [ 3 1 1 5 2 3 ] + [ 2 1 1 7 2 4 ] = [ 3 + 2 1 + 1 1 1 5 + 7 2 + 2 3 + 4 ] = [ 5 2 2 1 2 0 1 ] ( i i ) 2 X 3 Y = 2 [ 3 1 1 5 2 3 ] 3 [ 2 1 1 7 2 4 ] = [ 2 × 3 2 × 1 2 × 1 2 × 5 2 × 2 2 × 3 ] [ 3 × 2 1 × 3 1 × 3 3 × 7 3 × 2 3 × 4 ] = [ 6 2 2 1 0 4 6 ] [ 6 3 3 2 1 6 1 2 ] = [ 6 6 2 3 2 + 3 1 0 2 1 4 6 6 1 2 ] = [ 0 1 1 1 1 1 0 1 8 ] ( i i i ) X + Y + Z = 0 [ 3 1 1 5 2 3 ] + [ 2 1 1 7 2 4 ] + [ a b c d e f ] = [ 0 0 0 0 0 0 ] w h e r e Z = [ a b c d e f ] = [ 3 + 2 + a 1 + 1 + b 1 1 + c 5 + 7 + d 2 + 2 + e 3 + 4 + f ] = [ 0 0 0 0 0 &

Q:  

Find non-zero values of x  satisfying the matrix equation:

 x [ 2 x 2 3 x ] + 2 [ 8 5 x 4 4 x ] = [ x 2 + 8 2 4 ( 1 0 ) 6 x ] .

A: 

This is a short answer type question as classified in NCERT Exemplar

T h e g i v e n e q u a t i o n c a n b e w r i t t e n a s [ 2 x 2 2 x 3 x x 2 ] + [ 1 6 1 0 x 8 8 x ] = [ 2 x 2 + 1 6 4 8 2 0 1 2 x ] [ 2 x 2 + 1 6 a 1 2 3 x + 8 x 2 + 8 x ] = [ 2 x 2 + 1 6 4 8 2 0 1 2 x ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t 1 2 x = 4 8 , 3 x + 8 = 2 0 , x 2 + 8 x = 1 2 x x = 4 8 1 2 = 4 , 3 x = 2 0 8 = 1 2 , x 2 = 1 2 x 8 x = 4 x x = 4 , x 2 4 x = 0 x = 0 , x = 4 H e n c e , t h e n o n z e r o v a l u e s o f x i s 4 .

Q:  

If  A = [ 0 1 1 1 ] a n d B = [ 0 1 1 0 ] , show that ( A + B ) ( A B ) A 2 B 2 .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A = [ 0 1 1 1 ] a n d B = [ 0 1 1 0 ] A + B = [ 0 1 1 1 ] + [ 0 1 1 0 ] A + B = [ 0 + 0 1 1 1 + 1 1 + 0 ] A + B = [ 0 0 2 1 ] A B = [ 0 1 1 1 ] [ 0 1 1 0 ] A B = [ 0 0 1 + 1 1 1 1 0 ] A B = [ 0 2 0 1 ] ( A + B ) . ( A B ) = [ 0 0 2 1 ] [ 0 2 0 1 ] = [ 0 + 0 0 + 0 0 + 0 4 + 1 ] = [ 0 0 0 5 ] N o w , R . H . S . = A 2 B 2 = A . A B . B = [ 0 1 1 1 ] [ 0 1 1 1 ] [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 0 + 1 0 + 1 0 + 1 1 + 1 ] [ 0 1 0 + 0 0 + 0 1 + 0 ] = [ 1 1 1 2 ] [ 1 0 0 1 ] = [ 1 + 1 1 0 1 0 2 + 1 ] = [ 2 1 1 3 ] H e n c e , [ 0 0 0 5 ] [ 2 1 1 3 ] H e n c e , ( A + B ) . ( A B ) A 2 B 2

Q:  

Find the value of x  if

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

Show that A = [ 5 3 1 2 ]   satisfies the equation A 2 3 A 7 I = O , and hence find A 1 .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A = [ 5 3 1 2 ] A 2 = A . A = [ 5 3 1 2 ] [ 5 3 1 2 ] = [ 2 5 3 1 5 6 5 + 2 3 + 4 ] = [ 2 2 9 3 1 ] A 2 3 A 7 I = 0 L . H . S . [ 2 2 9 3 1 ] 3 [ 5 3 1 2 ] 7 [ 1 0 0 1 ] [ 2 2 9 3 1 ] [ 1 5 9 3 6 ] [ 7 0 0 7 ] [ 2 2 1 5 7 9 9 0 3 + 3 0 1 + 6 7 ] [ 0 0 0 0 ] R . H . S . W e a r e g i v e n A 2 3 A 7 I = 0 A 1 [ A 2 3 A 7 I ] = A 1 0 [ P r e m u l t i p l y i n g b o t h s i d e s b y A 1 ] A 1 A . A 3 A 1 . A 7 A 1 I = 0 [ A 1 0 = 0 ] I . A 3 I 7 A 1 I = 0 A 3 I 7 A 1 = 0 7 A 1 = 3 I A A 1 = 1 7 [ 3 I A ] A 1 = 1 7 [ 3 ( 1 0 0 1 ) [ 5 3 1 2 ] ] = 1 7 [ ( 3 0 0 3 ) [ 5 3 1 2 ] ] = 1 7 [ 3 5 0 3 0 + 1 3 + 2 ] = 1 7 [ 2 3 1 5 ] H e n c e , A 1 = 1 7 [ 2 3 1 5 ]

Q:  

Find the matrix A  satisfying the matrix equation:

A: 

This is a short answer type question as classified in NCERT Exemplar

L e t A = [ a b c d ] 2 × 2 [ 2 1 3 2 ] 2 × 2 [ a b c d ] 2 × 2 [ 3 2 5 3 ] 2 × 2 = [ 1 0 0 1 ] 2 × 2 [ 2 a + c 2 b + d 3 a + 2 c 3 b + 2 d ] 2 × 2 [ 3 2 5 3 ] 2 × 2 = [ 1 0 0 1 ] 2 × 2 [ 6 a 3 c + 1 0 b + 5 d 4 a + 2 c 6 b 3 d 9 a 6 c + 1 5 b + 1 0 d 6 a + 4 c 9 b 6 d ] = [ 1 0 0 1 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t , 6 a 3 c + 1 0 b + 5 d = 1 ( 1 ) 9 a 6 c + 1 5 b + 1 0 d = 0 ( 2 ) 4 a + 2 c 6 b 3 d = 0 ( 3 ) 6 a + 4 c 9 b 6 d = 1 ( 4 ) M u l t i p l y i n g e q . ( 1 ) b y 2 a n d s u b t r a c t i n g e q . ( 2 ) , w e g e t , 1 2 a 6 c + 2 0 b + 1 0 d = 2 9 a 6 c + 1 5 b + 1 0 d = 0 &t

Q:  

Find A , if Kindly Consider the following

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If then verify ( B A ) 2 B 2 A 2

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If possible, find B A  and A B , where

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

Show by an example that for A O , B O , A B = O .

A: 

This is a short answer type question as classified in NCERT Exemplar

L e t A = [ 1 1 1 1 ] a n d B = [ 1 1 1 1 ] A B = [ 1 1 1 1 ] [ 1 1 1 1 ] A B = [ 1 1 1 1 1 + 1 1 + 1 ] = [ 0 0 0 0 ] = 0 H e n c e , A = [ 1 1 1 1 ] a n d B = [ 1 1 1 1 ] .

Q:  

Given   Is ( A B ) ' = B A ?

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

Solve for x and y :

Kindly Consider the following

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If X and Y are 2 × 2   matrices, then solve the following matrix equations for X and Y:

2 X + 3 Y = [ 2 3 4 0 ] , 3 X + 2 Y = [ 2       2 1 5 ] .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : 2 X + 3 Y = [ 2 3 4 0 ] ( 1 ) 3 X + 2 Y = [ 2 2 1 5 ] ( 2 ) M u l t i p l y i n g e q . ( 1 ) b y 3 a n d e q . ( 2 ) b y 2 , w e g e t , 3 [ 2 X + 3 Y ] = 3 [ 2 3 4 0 ] 6 X + 9 Y = [ 6 9 1 2 0 ] ( 3 ) 2 [ 3 X + 2 Y ] = 2 [ 2 2 1 5 ] 6 X + 4 Y = [ 4 4 2 1 0 ] ( 4 ) O n s u b t r a c t i n g e q . ( 4 ) f r o m e q . ( 3 ) w e g e t 5 Y = [ 6 + 4 9 4 1 2 2 0 + 1 0 ] 5 Y = [ 1 0 5 1 0 1 0 ] Y = [ 2 1 2 2 ] N o w , p u t t i n g t h e v a l u e o f Y i n e q u a t i o n ( 1 ) w e g e t , 2 X + 3 [ 2 1 2 2 ] = [ 2 3 4 0 ] 2 X + [ 6 3 6 6 ] = [ 2 3 4 0 ] 2 X = [ 2 3 4 0 ] [ 6 3 6 6 ] 2 X = [ 2 6 3 3 4 6 0 6 ] 2 X = [ 4 0 2 6 ] X = 1 2 [ 4 0 2 6 ] X = [ 2 0 1 3 ] H e n c e , X = [ 2 0 1 3 ] a n d Y = [ 2 1 2 2 ] .

Q:  

If A = [ 3 5 ] , B = [ 7 3 ] , then find a non-zero matrix C  such that A C = B C   .

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

Give an example of matrices A , B , and C such that AB=AC , where A is a non-zero matrix, but BC .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

L e t A = [ 1 0 0 0 ] , B = [ 1 2 2 0 ] a n d C = [ 1 2 2 2 ] A B = [ 1 0 0 0 ] [ 1 2 2 0 ] A B = [ 1 + 0 2 + 0 0 + 0 0 + 0 ] = [ 1 2 0 0 ] A C = [ 1 0 0 0 ] [ 1 2 2 2 ] A C = [ 1 + 0 2 + 0 0 + 0 0 + 0 ] = [ 1 2 0 0 ] H e n c e , A B = A C f o r m a t r i x A i s n o n z e r o a n d B C .

Q:  

IfA=[1221],B=[2334],C=[1010],  verify:

(i)(AB)C=A(BC) .

(ii)A(B+C)=AB+AC .

A: 

This is a short answer type question as classified in NCERT Exemplar

L e t A = [ 1 2 2 1 ] , B = [ 2 3 3 4 ] a n d C = [ 1 0 1 0 ] ( i ) T o v e r i f y : ( A B ) C = A ( B C ) A B = [ 1 2 2 1 ] [ 2 3 3 4 ] = [ 2 + 6 3 8 4 + 3 6 4 ] = [ 8 5 1 1 0 ] L . H . S . ( A B ) C = [ 8 5 1 1 0 ] [ 1 0 1 0 ] = [ 8 + 5 0 + 0 1 + 1 0 0 + 0 ] = [ 1 3 0 9 0 ] B C = [ 2 3 3 4 ] [ 1 0 1 0 ] = [ 2 3 0 + 0 3 + 4 0 + 0 ] = [ 1 0 7 0 ] R . H . S . A ( B C ) = [ 1 2 2 1 ] [ 1 0 7 0 ] = [ 1 + 1 4 0 + 0 2 + 7 0 + 0 ] = [ 1 3 0 9 0 ] L . H . S . = R . H . S . S o , ( A B ) C = A ( B C ) ( i i ) T o v e r i f y : A ( B + C ) = A B + A C B + C = [ 2 3 3 4 ] + [ 1 0 1 0 ] = [ 2 + 1 3 + 0 3 1 4 + 0 ] = [ 3 3 2 4 ] L . H . S . A ( B + C ) = [ 1 2 2 1 ] [ 3 3 2 4 ] = [ 3 + 4 3 8 6 + 2 6 4 ] = [ 7 5 4 1 0 ] A B = [ 1 2 2 1 ] [ 2 3 3 4 ] = [ 2 + 6 3 8 4 + 3 6 4 ] = [ 8 5 1 1 0 ] A C = [ 1 2 2 1 ] [ 1 0 1 0 ] = [ 1 2 0 + 0 2 1 0 + 0 ] = [ 1 0 3 0 ] R . H . S . A B + A C = [ 8 5 1 1 0 ] + [ 1 0 3 0 ] = [ 8 1 5 + 0 1 3 1 0 + 0 ] = [ 7 5 4 1 0 ] L . H . S . = R . H . S . H e n c e , A ( B + C ) = A B + A C

Q:  

If P = [ x 0 0 0 y 0 0 0 z ] a n d Q = [ a 0 0 0 b 0 0 0 c ] ,   prove that P Q =   [ x a 0 0 0 y b 0 0 0 z c ] = Q P .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : P = [ x 0 0 0 y 0 0 0 z ] a n d Q = [ a 0 0 0 b 0 0 0 c ] P Q = [ x 0 0 0 y 0 0 0 z ] [ a 0 0 0 b 0 0 0 c ] = [ x a + 0 + 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0 0 + y b + 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + z c ] = [ x a 0 0 0 y b 0 0 0 z c ] N o w , Q P = [ a 0 0 0 b 0 0 0 c ] [ x 0 0 0 y 0 0 0 z ] = [ x a + 0 + 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0 0 + y b + 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + z c ] = [ x a 0 0 0 y b 0 0 0 z c ] H e n c e , P Q = Q P .

Q:  

Kindly Consider the following   find A.

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If verify that A ( B + C ) = ( A B + A C ) .

 

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If A = [ 1 0 1 2 1 3 0 1 1 ] ,   then verify that A 2 + A = A ( A + I ) , where I  is a 3 × 3  unit matrix.

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : A = [ 1 0 1 2 1 3 0 1 1 ] A 2 = A . A = [ 1 0 1 2 1 3 0 1 1 ] [ 1 0 1 2 1 3 0 1 1 ] = [ 1 + 0 + 0 0 + 0 1 1 + 0 1 2 + 2 + 0 0 + 1 + 3 2 + 3 + 3 0 + 2 + 0 0 + 1 + 1 0 + 3 + 1 ] = [ 1 1 2 4 4 4 2 2 4 ] L . H . S . A 2 + A = [ 1 1 2 4 4 4 2 2 4 ] + [ 1 0 1 2 1 3 0 1 1 ] = [ 1 + 1 1 + 0 2 1 4 + 2 4 + 1 4 + 3 2 + 0 2 + 1 4 + 1 ] = [ 2 1 3 6 5 7 2 3 5 ] R . H . S . A ( A + I ) = [ 1 0 1 2 1 3 0 1 1 ] [ ( 1 0 1 2 1 3 0 1 1 ) + ( 1 0 0 0 1 0 0 0 1 ) ] = [ 1 0 1 2 1 3 0 1 1 ] [ 2 0 1 2 2 3 0 1 2 ] = [ 2 + 0 + 0 0 + 0 1 1 + 0 2 4 + 2 + 0 0 + 2 + 3 2 + 3 + 6 0 + 2 + 0 0 + 2 + 1 0 + 3 + 2 ] = [ 2 1 3 6 5 7 2 3 5 ] L . H . S . = R . H . S A 2 + A = A ( A + I ) . H e n c e v e r i f i e d .

Q:  

then verify that:

(i) ( A ) ' = A   .

(ii) ( A B ) ' = B A .

(iii) ( k A ) ' = k ( A ) .

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If then verify that:

(i) ( 2 A + B ) ' = 2 A + B .

(ii) ( A B ) ' = A B .

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

Show that A A  and A A are both symmetric matrices for any matrix A .

A: 

This is a short answer type question as classified in NCERT Exemplar

L e t P = A ' A P ' = ( A ' A ) ' P ' = A ' ( A ' ) ' [ ( A B ) ' = B ' A ' ] P ' = A ' A [ ? ( A ' ) ' = A ] P ' = P H e n c e , A ' A i s a s y m m e t r i c m a t r i x . N o w , L e t Q = A A ' Q ' = ( A A ' ) ' Q ' = ( A ' ) ' A ' [ ( A B ) ' = B ' A ' ] P ' = A A ' [ ? ( A ' ) ' = A ] Q ' = Q H e n c e , A ' A i s a l s o a s y m m e t r i c m a t r i x .

Q:  

Let A  and B  be square matrices of the order 3 × 3 . Is ( A B ) 2 = A 2 B 2 ? Give reasons

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A ? ? a n d B a r e t h e m a t r i c e s o f t h e o r d e r 3 × 3 . ( A B ) 2 = A B . A B = A A . B B = A 2 . B 2 H e n c e , ( A B ) 2 = A 2 . B 2

Q:  

Show that if A and B are square matrices such that AB=BA , then (A+B)2=A2+2AB+B2 .

A: 

This is a short answer type question as classified in NCERT Exemplar

T o p r o v e t h a t ( A + B ) 2 = A 2 + 2 A B + B 2 L . H . S . ( A + B ) 2 = ( A + B ) ( A + B ) [ ? A 2 = A . A ] = A . A + A B + B A + B . B = A 2 + A B + A B + B 2 [ A B = B A ] = A 2 + 2 A B + B 2 R . H . S . S o , L . H . S . = R . H . S .

Q:  

Let A=[1213] , B=[4015] , C=[2012] , a=4 , b=2 .

Show that:

A: 

This is a short answer type question as classified in NCERT Exemplar

( a ) T o p r o v e t h a t A + ( B + C ) = ( A + B ) + C L . H . S . A + ( B + C ) = ( 1 2 1 3 ) + [ ( 4 0 1 5 ) + ( 2 0 1 2 ) ] = ( 1 2 1 3 ) + [ 4 + 2 0 + 0 1 + 1 5 2 ] = [ 1 2 1 3 ] + [ 6 0 2 3 ] = [ 1 + 6 2 + 0 1 + 2 3 + 3 ] = [ 7 2 1 6 ] R . H . S . ( A + B ) + C = [ ( 1 2 1 3 ) + ( 4 0 1 5 ) ] + ( 2 0 1 2 ) = [ 1 + 4 2 + 0 1 + 1 3 + 5 ] + [ 2 0 1 2 ] = [ 5 2 0 8 ] + [ 2 0 1 2 ] = [ 5 + 2 2 + 0 0 + 1 8 2 ] = [ 7 2 1 6 ] H e n c e , L . H . S . = R . H . S . A + ( B + C ) = ( A + B ) + C H e n c e P r o v e d . ( b ) T o p r o v e t h a t A ( B C ) = ( A B ) C L . H . S . A ( B C ) = [ 1 2 1 3 ] [ ( 4 0 1 5 ) ( 2 0 1 2 ) ] = [ 1 2 1 3 ] [ 8 + 0 0 + 1 0 2 + 5 0 1 0 ] = [ 1 2 1 3 ] [ 8 0 7 1 0 ] = [ 8 + 1 4 0 2 0

( c ) T o p r o v e t h a t ( a + b ) B = a B + b B H e r e , a = 4 a n d b = 2 L . H . S . ( a + b ) B = ( 4 2 ) [ 4 0 1 5 ] = 2 [ 4 0 1 5 ] = [ 8 0 2 1 0 ] R . H . S . a B + b B = 4 [ 4 0 1 5 ] 2 [ 4 0 1 5 ] = [ 1 6 0 4 2 0 ] [ 8 0 2 1 0 ] = [ 1 6 8 0 0 4 2 2 0 1 0 ] = [ 8 0 2 1 0 ] H e n c e , L . H . S . = R . H . S . ( a + b ) B = a B + b B H e n c e P r o v e d . ( d ) T o p r o v e t h a t a ( C A ) = a C a A L . H . S . a ( C A ) = 4 [ ( 2 0 1 2 ) ( 1 2 1 3 ) ] = 4 [ 2 1 0 2 1 + 1 2 3 ] = 4 [ 1 2 2 5 ] = [ 4 8 8 2 0 ] R . H . S . a C a A = 4 [ 2 0 1 2 ] 4 [ 1 2 1 3 ] &thi

( g ) T o p r o v e t h a t ( A B ) T = B T A T L . H . S . ( A B ) T = [ ( 1 2 1 3 ) ( 4 0 1 5 ) ] T = [ 4 + 2 0 + 1 0 4 + 3 0 + 1 5 ] T = [ 6 1 0 1 1 5 ] T = [ 6 1

Q:  

If A = [ c o s θ s i n θ s i n θ c o s θ ] , then show that A 2 = [ c o s 2 θ s i n 2 θ s i n 2 θ c o s 2 θ ] .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A = [ c o s q s i n q s i n q c o s q ] A = A . A = [ c o s q s i n q s i n q c o s q ] [ c o s q s i n q s i n q c o s q ] = [ c o s 2 q s i n 2 q c o s q s i n q + s i n q c o s q s i n q c o s q c o s q s i n q s i n 2 q + c o s 2 q ] = [ c o s 2 q s i n 2 q s i n 2 q c o s 2 q ] [ ? c o s 2 A s i n 2 A = c o s 2 A 2 s i n A c o s A = s i n 2 A ] H e n c e p r o v e d .

Q:  

If A = [ 0 x x 0 ] , B = [ 0 1 1 0 ] , and x 2 = 1 , then show that ( A + B ) 2 = A 2 + B 2 .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A = [ 0 x x 0 ] a n d B = [ 0 1 1 0 ] L . H . S . ( A + B ) 2 = ( A + B ) . ( A + B ) = [ ( 0 x x 0 ) + ( 0 1 1 0 ) ] . [ ( 0 x x 0 ) + ( 0 1 1 0 ) ] = [ 0 + 0 x + 1 x + 1 0 + 0 ] . [ 0 + 0 x + 1 x + 1 0 + 0 ] = [ 0 + ( x + 1 ) ( x + 1 ) 0 + 0 0 + 0 ( x + 1 ) ( x + 1 ) + 0 ] = [ 1 x 2 0 0 1 x 2 ] P u t x 2 = 1 = [ 1 + 1 0 0 1 + 1 ] = [ 2 0 0 2 ] R . H . S . A 2 + B 2 = A . A + B . B = [ 0 x x 0 ] . [ 0 x x 0 ] + [ 0 1 1 0 ] . [ 0 1 1 0 ] = [ 0 x 2 0 + 0 0 + 0 x 2 + 0 ] + [ 0 + 1 0 + 0 0 + 0 1 + 0 ] = [ x 2 0 0 x 2 ] + [ 1 0 0 1 ] = [ x 2 + 1 0 + 0 0 + 0 x 2 + 1 ] = [ x 2 + 1 0 0 x 2 + 1 ] = [ 1 + 1 0 0 1 + 1 ] [ ? x 2 = 1 ] = [ 2 0 0 2 ] H e n c e , L . H . S . = R . H . S . ( A + B ) 2 = A 2 + B 2

Q:  

Verify that A 2 = I  when A = [ 0 1 1 4 3 4 3 3 4 ] .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t A = [ 0 1 1 4 3 4 3 3 4 ] L . H . S . A 2 = A . A = [ 0 1 1 4 3 4 3 3 4 ] . [ 0 1 1 4 3 4 3 3 4 ] = [ 0 + 4 3 0 3 + 3 0 + 4 4 0 1 2 + 1 2 4 + 9 1 2 4 1 2 + 1 6 0 1 2 + 1 2 3 + 9 1 2 3 1 2 + 1 6 ] = [ 1 0 0 0 1 0 0 0 1 ] = 1 R . H . S . H e n c e , A 2 = I i s v e r i f i e d .

Q:  

Prove by Mathematical Induction that (A)n=(An)' , where nN for any square matrix A .

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

T o p r o v e t h a t ( A ' ) n = ( A n ) ' L e t P ( n ) : ( A ' ) n = ( A n ) ' S t e p 1 : P u t n = 1 , P ( 1 ) : A ' = A ' w h i c h i s t r u e f o r n = 1 S t e p 2 : P u t n = K , P ( K ) : ( A ' ) K = ( A K ) ' L e t i t b e t r u e f o r n = K S t e p 3 : P u t n = K + 1 , P ( K + 1 ) : ( A ' ) K + 1 = ( A K + 1 ) ' L . H . S . ( A ' ) K + 1 = ( A ' ) K . ( A ' ) = ( A K ) ' . ( A ' ) [ F r o m s t e p 2 ] = ( A K . A ) ' = ( A K + 1 ) ' R . H . S . T h e g i v e n s t a t e m e n t i s t r u e f o r P ( K + 1 ) w h e n e v e r i t i s t r u e f o r P ( K ) , w h e r e K N .

Q:  

Find inverse, by elementary row operations (if possible), of the following matrices:

(i) [ 1 3 5 7 ]

(ii)  [1326]

A: 

This is a short answer type question as classified in NCERT Exemplar

( i ) L e t A = [ 1 3 5 7 ] | A | = 1 × 7 ( 5 ) × 3 = 7 + 1 5 = 2 2 0 S o , A i s i n v e r t i b l e . L e t A = I A [ 1 3 5 7 ] = [ 1 0 0 1 ] A R 2 R 2 + 5 R 1 [ 1 3 0 2 2 ] = [ 1 0 5 1 ] A R 2 1 2 2 R 2 [ 1 3 0 1 ] = [ 1 0 5 2 2 1 2 2 ] A R 1 R 1 3 R 2 [ 1 0 0 1 ] = [ 7 2 2 3 2 2 5 2 2 1 2 2 ] A S o , A 1 = [ 7 2 2 3 2 2 5 2 2 1 2 2 ] 1 2 2 [ 7 3 5 1 ] H e n c e , i n v e r s e o f [ 1 3 5 7 ] i s 1 2 2 [ 7 3 5 1 ] ( i i ) L e t A = [ 1 3 2 6 ] | A | = 1 × 6 ( 3 ) × ( 2 ) = 6 6 = 0 | A | = 0 S o , A i s n o t i n v e r t i b l e . H e n c e , i n v e r s e o f [ 1 3 2 6 ] i s n o t p o s s i b l e .

Q:  

If [ x y 4 z + 6 x + y ] = [ 8 w 0 6 ]  , then find the values of x , y , z , and w .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : [ x y 4 z + 6 x + y ] = [ 8 w 0 6 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , x y = 8 , w = 4 , z + 6 = 0 z = 6 , x + y = 6 N o w , s o l v i n g x + y = 6 ( 1 ) a n d x y = 8 ( 2 ) F r o m e q n . ( 1 ) , y = 6 x ( 3 ) P u t t i n g t h e v a l u e o f y i n e q n . ( 2 ) w e g e t , x ( 6 x ) = 8 6 x x 2 = 8 x 2 6 x + 8 = 0 x 2 4 x 2 x + 8 = 0 x ( x 4 ) 2 ( x 4 ) = 0 ( x 4 ) ( x 2 ) = 0 x = 4 , 2 F r o m e q n . ( 3 ) , y = 2 , 4 . H e n c e , x = 4 o r 2 , y = 2 o r 4 , z = 6 a n d w = 4

Q:  

If A = [ 1 5 7 1 2 ]  and B = [ 9 1 7 8 ] , find a matrix C  such that 3 A + 5 B + 2 C  is a null matrix.

A: 

This is a short answer type question as classified in NCERT Exemplar

O r d e r o f m a t r i c e s A a n d B i s 2 × 2 . O r d e r o f m a t r i x C m u s t b e 2 × 2 . L e t C = [ a b c d ] 3 A + 5 B + 2 C = 0 3 [ 1 5 7 1 2 ] + 5 [ 9 1 7 8 ] + 2 [ a b c d ] = [ 0 0 0 0 ] [ 3 1 5 2 1 3 6 ] + [ 4 5 5 3 5 4 0 ] + [ 2 a 2 b 2 c 2 d ] = [ 0 0 0 0 ] [ 3 + 4 5 + 2 a 1 5 + 5 + 2 b 2 1 + 3 5 + 2 c 3 6 + 4 0 + 2 d ] = [ 0 0 0 0 ] [ 4 8 + 2 a 2 0 + 2 b 5 6 + 2 c 7 6 + 2 d ] = [ 0 0 0 0 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t , 4 8 + 2 a = 0 2 a = 4 8 a = 2 4 2 0 + 2 b = 0 2 b = 2 0 b = 1 0 5 6 + 2 c = 0 2 c = 5 6 c = 2 8 7 6 + 2 d = 0 2 d = 7 6 d = 3 8 H e n c e , C = [ 2 4 1 0 2 8 3 8 ]

Q:  

If A = [ 3 5 4 2 ] , then find A 2 5 A 1 4 I . Hence, obtain A 3 .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : A = [ 3 5 4 2 ] A 2 = A . A = [ 3 5 4 2 ] [ 3 5 4 2 ] = [ 9 + 2 0 1 5 1 0 1 2 8 2 0 + 4 ] = [ 2 9 2 5 2 0 2 4 ] A 2 5 A 1 4 I = [ 2 9 2 5 2 0 2 4 ] 5 [ 3 5 4 2 ] 1 4 [ 1 0 0 1 ] = [ 2 9 2 5 2 0 2 4 ] [ 1 5 2 5 2 0 1 0 ] [ 1 4 0 0 1 4 ] = [ 2 9 2 5 2 0 2 4 ] [ 2 9 2 5 2 0 2 4 ] = [ 2 9 2 9 2 5 + 2 5 2 0 + 2 0 2 4 2 4 ] = [ 0 0 0 0 ] H e n c e , A 2 5 A 1 4 I = 0 N o w , m u l t i p l y i n g b o t h s i d e s b y A , w e g e t , A 2 . A 5 A . A 1 4 I A = 0 A A 3 5 A 2 1 4 A = 0 A 3 = 5 A 2 + 1 4 A A 3 = 5 [ 2 9 2 5 2 0 2 4 ] + 1 4 [ 3 5 4 2 ] = [ 1 4 5 1 2 5 1 0 0 1 2 0 ] + [ 4 2 7 0 5 6 2 8 ] = [ 1 4 5 + 4 2 1 2 5 7 0 1 0 0 5 6 1 2 0 + 2 8 ] = [ 1 8 7 1 9 5 1 5 6 1 4 8 ] H e n c e , A 3 = [ 1 8 7 1 9 5 1 5 6 1 4 8 ]

Q:  

Find the values of a , b , c , and d , if

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : 3 [ a b c d ] = [ a 6 1 2 d ] + [ 4 a + b c + d 3 ] [ 3 a 3 b 3 c 3 d ] = [ a + 4 6 + a + b 1 + c + d 2 d + 3 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t , 3 a = a + 4 3 a a = 4 2 a = 4 a = 2 3 b = 6 + a + b 3 b b a = 6 2 b a = 6 2 b 2 = 6 2 b = 8 b = 4 3 c = 1 + c + d 3 c c d = 1 2 c d = 1 3 d = 2 d + 3 3 d 2 d = 3 d = 3 N o w , 2 c d = 1 2 c 3 = 1 2 c = 3 1 2 c = 2 c = 1 a = 2 , b = 4 , c = 1 , d = 3 .

Q:  

Find the matrix A such that

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If A = [ 1 2 4 1 ]  , find A 2 + 2 A + 7 I .

A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t : A = [ 1 2 4 1 ] A 2 = A . A = [ 1 2 4 1 ] [ 1 2 4 1 ] = [ 1 + 8 2 + 2 4 + 4 8 + 1 ] = [ 9 4 8 9 ] A 2 + 2 A + 7 I = [ 9 4 8 9 ] + 2 [ 1 2 4 1 ] + 7 [ 1 0 0 1 ] = [ 9 4 8 9 ] + [ 2 4 8 2 ] + [ 7 0 0 7 ] = [ 9 + 2 + 7 4 + 4 + 0 8 + 8 + 0 9 + 2 + 7 ] = [ 1 8 8 1 6 1 8 ] H e n c e , A 2 + 2 A + 7 I = [ 1 8 8 1 6 1 8 ]

Q:  

If A = [ c o s α s i n α s i n α c o s α ] , and A 1 = A T , find the value of α .

A: 

This is a short answer type question as classified in NCERT Exemplar

H e r e , A = [ c o s α s i n α s i n α c o s α ] G i v e n t h a t : A 1 = A ' PremultiplyingbothsidesbyA A A 1 = A A ' I = A A ' [ ? A A 1 = I ] [ 1 0 0 1 ] = [ c o s α s i n α s i n α c o s α ] [ c o s α s i n α s i n α c o s α ] [ 1 0 0 1 ] = [ c o s 2 α + s i n 2 α s i n α c o s α + s i n α c o s α s i n α c o s α + c o s α s i n α s i n 2 α + c o s 2 α ] [ 1 0 0 1 ] = [ 1 0 0 1 ] H e n c e , i t i s t r u e f o r a l l v a l u e s o f α .

Q:  

If the matrix [ 0 a 3 2 b 1 c 1 0 ]  is a skew-symmetric matrix, find the values of a, b, and c.

A: 

This is a short answer type question as classified in NCERT Exemplar

L e t A = [ 0 a 3 2 b 1 c 1 0 ] A ' = [ 0 2 c a b 1 3 1 0 ] F o r s k e w s y m m e t r i c m a t r i x , A ' = A [ 0 2 c a b 1 3 1 0 ] = [ 0 a 3 2 b 1 c 1 0 ] [ 0 2 c a b 1 3 1 0 ] = [ 0 a 3 2 b 1 c 1 0 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t a = 2 , b = b 2 b = 0 b = 0 a n d c = 3 H e n c e , a = 2 , b = 0 a n d c = 3 .

Q:  

If P ( x ) = [ c o s x s i n x s i n x c o s x ] , then show that P ( x ) P ( y ) = P ( x + y ) = P ( y ) P ( x ) .

A: 

This is a short answer type question as classified in NCERT Exemplar

Q:  

If A is a square matrix such that A 2 = A , show that ( I + A ) 3 = 7 A + I .

A: 

This is a short answer type question as classified in NCERT Exemplar

T o s h o w t h a t : ( I + A ) 3 = 7 A + I L . H . S . ( I + A ) 3 = I 3 + A 3 + 3 I 2 A + 3 I A 2 = I + A 2 . A + 3 I A + 3 I A 2 = I + A . A + 3 I A + 3 I A [ ? A 2 = A ] = I + A 2 + 3 I A + 3 I A = I + A + 3 I A + 3 I A [ ? A 2 = A ] = I + A + 3 A + 3 A 7 A + I R . H . S . L . H . S . = R . H . S . H e n c e , p r o v e d .

Q:  

If A , B   are square matrices of the same order and B  is a skew-symmetric matrix, show that A T B A  is skew-symmetric

Read more
A: 

This is a short answer type question as classified in NCERT Exemplar

G i v e n t h a t B i s a s k e w s y m m e t r i c m a t r i x B ' = B L e t P = A ' B A P ' = ( A ' B A ) ' = A ' B ' ( A ' ) ' [ ( A ' B ) ' = B ' A ' ] = A ' ( B ) A = A ' B A = P S o P ' = P H e n c e , A ' B A i s a s k e w s y m m e t r i c m a t r i x .

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Objective Type Questions

Choose the correct answer from the given four options in each of the Exercises 1 to 15:

Q1. The matrix   P = [ 0 0 4 0 4 0 4 0 0 ] is a

(A) square matrix

(B) diagonal matrix

(C) unit matrix

(D) none

Sol:

G i v e n t h a t A = [ 0 0 4 0 4 0 4 0 0 ] H e r e , n u m b e r o f c o l u m n s a n d t h e n u m b e r o f r o w s a r e e q u a l i . e . , 3 . S o , A i s a s q u a r e m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q2. Total number of possible matrices of order 3 × 3  with each entry 2 or 0 is

(A) 9

(B) 27

(C) 81

(D) 512

Sol:

T o t a l n u m b e r o f p o s s i b l e m a t r i c e s o f o r d e r 3 × 3 w i t h e a c h e n t r y 0 o r 2 = 2 3 × 3 = 2 9 = 5 1 2 . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q3. If [ 2 x + y 4 x 5 x 7 4 x ] = [ 7 7 y 1 3 y x + 6 ] ,   then the value of x + y is

(A) x = 3 , y = 1

(B) x = 2 , y = 3

(C) x = 2 , y = 4

(D) x = 3 , y = 3

Sol:

G i v e n t h a t : [ 2 x + y 4 x 5 x 7 4 x ] = [ 7 7 y 1 3 y x + 6 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t , 2 x + y = 7 ( i ) a n d 4 x = 7 y 1 3 ( i i ) f r o m e q n . ( i i ) 4 x x = 6 3 x = 6 x = 2 f r o m e q n . ( i ) 2 × 2 + y = 7 4 + y = 7 y = 7 4 = 3 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q4. If A = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] , B = 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( x π ) ] ,   then A B  is equal to:

Sol:

G i v e n t h a t : A = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] a n d B = 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( π x ) ] A B = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( π x ) ] = 1 π [ s i n 1 ( x π ) + c o s 1 ( x π ) t a n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) + t a n 1 ( π x ) ] = 1 π [ π 2 0 0 π 2 ] [ s i n 1 x + c o s 1 x = π 2 t a n 1 x + c o t 1 x = π 2 ] = 1 π × π 2 [ 1 0 0 1 ] = 1 2 I H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q5. If  A  and  B  are two matrices of the order  3 × m  and  3 × n  , respectively, and  m = n  , then the order of the matrix  ( 5 A 2 B )  is

(A) m × 3

(B) 3 × 3

(C) m × n

(D) 3 × n

Sol:

A s w e k n o w t h a t t h e a d d i t i o n a n d s u b t r a c t i o n o f t w o m a t r i c e s i s o n l y p o s s i b l e w h e n t h e y h a v e s a m e o r d e r . I t i s a l s o g i v e n t h a t m = n . O r d e r o f ( 5 A 2 B ) i s 3 × n . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q6. If  A = [ 1 0 0 1 ]  , then  A 2  is equal to

(A) [ 1 0 0 1 ]

(B) [ 1 0 1 0 ]

(C) [ 0 1 0 1 ]

(D) [ 1 0 0 1 ]

Sol:

G i v e n t h a t A = [ 0 1 1 0 ] A 2 = A . A = [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 0 + 1 0 + 0 0 + 0 1 + 0 ] = [ 1 0 0 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q7. If matrix A = [ a i j ] 2 × 2 , where a i j = 1  if i j

if i = j  ,then  A 2 is equal to

(A) I

(B) A

(C) 0

(D) None of these

Sol:

G i v e n t h a t A = [ a i j ] 2 × 2 L e t A = [ a 1 1 a 1 2 a 2 1 a 2 2 ] 2 × 2 a 1 1 = 0 [ i = j ] a 1 2 = 1 [ i j ] a 2 1 = 1 [ i j ] a 2 2 = 0 [ i = j ] A = [ 0 1 1 0 ] N o w , A 2 = A . A = [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 0 + 1 0 + 0 0 + 0 1 + 0 ] = [ 1 0 0 1 ] = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q8.The matrix [ 1 0 0 0 2 0 0 0 4 ]  is a

(A) Identity matrix

(B) Symmetric matrix

(C) Skew symmetric matrix

(D) None of these

Sol:

L e t A = [ 1 0 0 0 2 0 0 0 4 ] A ' = [ 1 0 0 0 2 0 0 0 4 ] = A A ' = A , s o A i s a s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q9. The matrix [ 0 5 8 5 0 1 2 8 1 2 0 ]  is a

(A) Diagonal matrix

(B) Symmetric matrix

(C) Skew symmetric matrix

(D) Scalar matrix

Sol:

L e t A = [ 0 5 8 5 0 1 2 8 1 2 0 ] A ' = [ 0 5 8 5 0 1 2 8 1 2 0 ] A ' = [ 0 5 8 5 0 1 2 8 1 2 0 ] = A A ' = A , s o A i s a s k e w s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q10. If A  is a matrix of order m × n  and B  is a matrix such that A B  and B A  are both defined, then the order of matrix B  is

(A) m × m

(B) n × n

(C) n × m

(D) m × n

Sol:

O r d e r o f m a t r i x A = m × n L e t o r d e r o f m a t r i x B b e K × P I f A B ' i s d e f i n e d t h e n t h e o r d e r o f A B ' i s m × K i f n = P I f B ' A i s d e f i n e d t h e n t h e o r d e r o f B ' A i s P × n w h e n K = m N o w , o r d e r o f B ' = P × K o r d e r o f B ' = K × P = m × n [ K = m , P = n ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q11. If A  and B are matrices of the same order, then A B B A  is a

(A) Skew symmetric matrix

(B) Null matrix

(C) Symmetric matrix

(D) Unit matrix

Sol:

L e t P = ( A B ' B A ' ) P ' = ( A B ' B A ' ) ' = ( A B ' ) ' ( B A ' ) ' = ( B ' ) ' A ' ( A ' ) ' B ' [ ( A B ) ' = B ' A ' ] = B A ' A B ' = ( A B ' B A ' ) = P P ' = P , s o i t i s a s k e w s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q12. If A  is a square matrix such that A 2 = I , then ( A I ) 3 + ( A + I ) 3 7 A  is equal to

(A) A

(B) I - A

(C) I + A

(D) 3A

Sol:

( A I ) 3 + ( A + I ) 3 7 A = A 3 I 3 3 A 2 I + 3 A I 2 + A 3 + I 3 + 3 A 2 I + 3 A I 2 7 A = 2 A 3 + 6 A I 2 7 A = 2 A . A 2 + 6 A I 7 A = 2 A I + 6 A I 7 A [ A 2 = I ] = 8 A I 7 A = 8 A 7 A = A H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q13. For any two matrices A  and B , we have

(A) AB = BA

(B) AB AB BA BA

(C) AB = O

(D) None of the above

Sol:

W e k n o w t h a t f o r a n y t w o m t r i c e s A a n d B , w e m a y h a v e A B = B A , A B B A a n d A B = 0 , b u t i t i s n o t a l w a y s t r u e . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q14. On using elementary column operations C 2 C 2 2 C 1  in the following matrix equation:   [ 1 3 2 4 ] = [ 1 1 0 1 ] [ 3 1 2 4 ] ,  we have:

(A) [ 1 5 0 4 ] = [ 1 1 2 2 ] [ 3 5 2 0 ]

(B) [ 1 5 0 4 ] = [ 1 1 0 1 ] [ 3 5 0 2 ]

(C) [ 1 5 2 0 ] = [ 1 3 0 1 ] [ 3 1 2 4 ]

(D) [ 1 5 2 0 ] = [ 1 1 0 1 ] [ 3 5 2 0 ]

Sol:

G i v e n t h a t : [ 1 3 2 4 ] = [ 1 1 0 1 ] [ 3 1 2 4 ] Using C 2 C 2 2 C 1 , w e g e t [ 1 5 2 0 ] = [ 1 1 0 1 ] [ 3 5 2 0 ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q15. On using elementary row operation R 1 R 1 3 R 2  in the following matrix equation:

[ 4 2 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ] ,  we have:

(A) [ 5 7 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ]

(B) [ 5 7 3 3 ] = [ 1 2 0 3 ] [ 1 3 1 1 ]

(C) [ 5 7 3 3 ] = [ 1 2 1 7 ] [ 2 0 1 7 ]

(D) [ 4 2 5 7 ] = [ 1 2 3 3 ] [ 2 0 1 1 ]

Sol:

W e h a v e , [ 4 2 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ] Using e l e m e n t a r y r o w t r a n s f o r m a t i o n R 1 R 1 3 R 2 , w e g e t [ 5 7 3 3 ] = [ 1 7 0 3 ] [ 2 0 1 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q&A Icon
Commonly asked questions
Q:  

The matrix   P = [ 0 0 4 0 4 0 4 0 0 ] is a

(A) Square matrix

(B) Diagonal matrix

(C) Unit matrix

(D) None

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t A = [ 0 0 4 0 4 0 4 0 0 ] H e r e , n u m b e r o f c o l u m n s a n d t h e n u m b e r o f r o w s a r e e q u a l i . e . , 3 . S o , A i s a s q u a r e m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

Total number of possible matrices of order 3 × 3  with each entry 2 or 0 is

(A) 9

(B) 27

(C) 81

(D) 512

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

T o t a l n u m b e r o f p o s s i b l e m a t r i c e s o f o r d e r 3 × 3 w i t h e a c h e n t r y 0 o r 2 = 2 3 × 3 = 2 9 = 5 1 2 . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If [ 2 x + y 4 x 5 x 7 4 x ] = [ 7 7 y 1 3 y x + 6 ] ,   then the value of x + y is

(A) x = 3 , y = 1

(B) x = 2 , y = 3

(C) x = 2 , y = 4

(D) x = 3 , y = 3

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : [ 2 x + y 4 x 5 x 7 4 x ] = [ 7 7 y 1 3 y x + 6 ] E q u a t i n g t h e c o r r e s p o n d i n g e l e m e n t s , w e g e t , 2 x + y = 7 ( i ) a n d 4 x = 7 y 1 3 ( i i ) f r o m e q n . ( i i ) 4 x x = 6 3 x = 6 x = 2 f r o m e q n . ( i ) 2 × 2 + y = 7 4 + y = 7 y = 7 4 = 3 H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

If A = 1 π [ s i n 1 ( xπ ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] , B = 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( x π ) ] ,   then A B  is equal to:

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : A = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] a n d B = 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( π x ) ] A B = 1 π [ s i n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) ] 1 π [ c o s 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) t a n 1 ( π x ) ] = 1 π [ s i n 1 ( x π ) + c o s 1 ( x π ) t a n 1 ( x π ) t a n 1 ( x π ) s i n 1 ( x π ) s i n 1 ( x π ) c o t 1 ( π x ) + t a n 1 ( π x ) ] = 1 π [ π 2 0 0 π 2 ] [ ? s i n 1 x + c o s 1 x = π 2 t a n 1 x + c o t 1 x = π 2 ] = 1 π × π 2 [ 1 0 0 1 ] = 1 2 I H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If A and B are two matrices of the order 3×m and 3×n , respectively, and m=n , then the order of the matrix (5A2B) is

(A) m × 3

(B) 3 × 3

(C) m × n

(D) 3 × n

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

A s w e k n o w t h a t t h e a d d i t i o n a n d s u b t r a c t i o n o f t w o m a t r i c e s i s o n l y p o s s i b l e w h e n t h e y h a v e s a m e o r d e r . I t i s a l s o g i v e n t h a t m = n . O r d e r o f ( 5 A 2 B ) i s 3 × n . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If A=[1001] , then A2 is equal to

(A) [ 1 0 0 1 ]

(B) [ 1 0 1 0 ]

(C) [ 0 1 0 1 ]

(D) [ 1 0 0 1 ]

A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t A = [ 0 1 1 0 ] A 2 = A . A = [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 0 + 1 0 + 0 0 + 0 1 + 0 ] = [ 1 0 0 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

If matrix A=[aij]2×2 , where aij=1  if ij if i=j ,then A2 is equal to

(A) I

(B) A

(C) 0

(D) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t A = [ a i j ] 2 × 2 L e t A = [ a 1 1 a 1 2 a 2 1 a 2 2 ] 2 × 2 a 1 1 = 0 [ ? i = j ] a 1 2 = 1 [ ? i j ] a 2 1 = 1 [ ? i j ] a 2 2 = 0 [ ? i = j ] A = [ 0 1 1 0 ] N o w , A 2 = A . A = [ 0 1 1 0 ] [ 0 1 1 0 ] = [ 0 + 1 0 + 0 0 + 0 1 + 0 ] = [ 1 0 0 1 ] = 1 H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

The matrix [ 1 0 0 0 2 0 0 0 4 ]  is a

(A) Identity matrix

(B) Symmetric matrix

(C) Skew symmetric matrix

(D) None of these

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t A = [ 1 0 0 0 2 0 0 0 4 ] A ' = [ 1 0 0 0 2 0 0 0 4 ] = A A ' = A , s o A i s a s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( b ) .

Q:  

The matrix [ 0 5 8 5 0 1 2 8 1 2 0 ]  is a

(A) Diagonal matrix

(B) Symmetric matrix

(C) Skew symmetric matrix

(D) Scalar matrix

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t A = [ 0 5 8 5 0 1 2 8 1 2 0 ] A ' = [ 0 5 8 5 0 1 2 8 1 2 0 ] A ' = [ 0 5 8 5 0 1 2 8 1 2 0 ] = A A ' = A , s o A i s a s k e w s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( c ) .

Q:  

10. If A  is a matrix of order m × n  and B  is a matrix such that A B  and B A  are both defined, then the order of matrix B  is

(A) m × m

(B) n × n

(C) n × m

(D) m × n

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

O r d e r o f m a t r i x A = m × n L e t o r d e r o f m a t r i x B b e K × P I f A B ' i s d e f i n e d t h e n t h e o r d e r o f A B ' i s m × K i f n = P I f B ' A i s d e f i n e d t h e n t h e o r d e r o f B ' A i s P × n w h e n K = m N o w , o r d e r o f B ' = P × K o r d e r o f B ' = K × P = m × n [ ? K = m , P = n ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

 If A  and B are matrices of the same order, then A B B A  is a

(A) Skew symmetric matrix

(B) Null matrix

(C) Symmetric matrix

(D) Unit matrix

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

L e t P = ( A B ' B A ' ) P ' = ( A B ' B A ' ) ' = ( A B ' ) ' ( B A ' ) ' = ( B ' ) ' A ' ( A ' ) ' B ' [ ? ( A B ) ' = B ' A ' ] = B A ' A B ' = ( A B ' B A ' ) = P P ' = P , s o i t i s a s k e w s y m m e t r i c m a t r i x . H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

If A  is a square matrix such that A 2 = I , then ( A I ) 3 + ( A + I ) 3 7 A  is equal to

(A) A

(B) I - A

(C) I + A

(D) 3A

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

( A I ) 3 + ( A + I ) 3 7 A = A 3 I 3 3 A 2 I + 3 A I 2 + A 3 + I 3 + 3 A 2 I + 3 A I 2 7 A = 2 A 3 + 6 A I 2 7 A = 2 A . A 2 + 6 A I 7 A = 2 A I + 6 A I 7 A [ A 2 = I ] = 8 A I 7 A = 8 A 7 A = A H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Q:  

For any two matrices A  and B , we have

(A) AB = BA

(B) AB ABBA BA

(C) AB = O

(D) None of the above

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

W e k n o w t h a t f o r a n y t w o m t r i c e s A a n d B , w e m a y h a v e A B = B A , A B B A a n d A B = 0 , b u t i t i s n o t a l w a y s t r u e . H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

On using elementary column operations C 2 C 2 2 C 1  in the following matrix equation:   [ 1 3 2 4 ] = [ 1 1 0 1 ] [ 3 1 2 4 ] ,  we have:

(A) [ 1 5 0 4 ] = [ 1 1 2 2 ] [ 3 5 2 0 ]

(B) [ 1 5 0 4 ] = [ 1 1 0 1 ] [ 3 5 0 2 ]

(C) [ 1 5 2 0 ] = [ 1 3 0 1 ] [ 3 1 2 4 ]

(D) [ 1 5 2 0 ] = [ 1 1 0 1 ] [ 3 5 2 0 ]

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

G i v e n t h a t : [ 1 3 2 4 ] = [ 1 1 0 1 ] [ 3 1 2 4 ] UsingC2C22C1,weget [ 1 5 2 0 ] = [ 1 1 0 1 ] [ 3 5 2 0 ] H e n c e , t h e c o r r e c t o p t i o n i s ( d ) .

Q:  

On using elementary row operation R1R13R2  in the following matrix equation:

[ 4 2 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ] ,  we have:

(A) [ 5 7 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ]

(B) [ 5 7 3 3 ] = [ 1 2 0 3 ] [ 1 3 1 1 ]

(C) [ 5 7 3 3 ] = [ 1 2 1 7 ] [ 2 0 1 7 ]

(D) [ 4 2 5 7 ] = [ 1 2 3 3 ] [ 2 0 1 1 ]

Read more
A: 

This is an Objective Type Questions as classified in NCERT Exemplar

W e h a v e , [ 4 2 3 3 ] = [ 1 2 0 3 ] [ 2 0 1 1 ] UsingelementaryrowtransformationR1R13R2,weget [ 5 7 3 3 ] = [ 1 7 0 3 ] [ 2 0 1 1 ] H e n c e , t h e c o r r e c t o p t i o n i s ( a ) .

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices Fill in the blanks Type Questions

Q1. ___ matrix is both symmetric and skew symmetric matrix.

Sol.

N u l l m a t r i x i . e . [ 0 0 0 0 ] o r [ 0 0 0 0 0 0 0 0 0 ] i s b o t h s y m m e t r i c a n d s k e w s y m m e t r i c m a t r i x .

Q2. Sum of two skew symmetric matrices is always ___ matrix.

Sol.

L e t A a n d B b e a n y t w o m a t r i c e s F o r s k e w s y m m e t r i c m a t r i c e s A = A ' ( i ) a n d B = B ' ( i i ) A d d i n g ( i ) a n d ( i i ) w e g e t A + B = A ' B ' A + B = ( A ' + B ' ) , s o A + B i s s k e w s y m m e t r i c m a t r i x . H e n c e , t h e s u m o f t w o s k e w s y m m e t r i c m a t r i c e s i s a l w a y s s k e w s y m m e t r i c m a t r i c e s .

Q3. The negative of a matrix is obtained by multiplying it by ___.

Sol.

L e t A b e a m a t r i x A = 1 . A H e n c e , n e g a t i v e o f a m a t r i x i s o b t a i n e d b y m u l t i p l y i n g i t b y 1 .

Q4. The product of any matrix by the scalar ___ is the null matrix.

Sol.

L e t A b e a n y m a t r i x 0 . A = A . 0 H e n c e , t h e p r o d u c t o f a n y m a t r i x i s b y t h e r s c a l a r 0 i s t h e n u l l m a t r i x .

Q5. A matrix which is not a square matrix is called a ___ matrix.

Sol.

A m a t r i x w h i c h i s n o t a s q u a r e m a t r i x i s c a l l e d a rectangular m a t r i x .

Q6. Matrix multiplication is ___ over addition.

Sol:   

M a t r i x m u l t i p l i c a t i o n i s d i s t r i b u t i v e o v e r a d d i t i o n . L e t A , B , a n d C b e a n y m a t r i c e s . S o , ( i ) A ( B + C ) = A B + A C ( i i ) ( A + B ) C = A C + B C

Q7. If A  is a symmetric matrix, then A 3  is a ___ matrix.

Sol. 

L e t A b e a s y m m e t r i c m a t r i x A ' = A ( A 3 ) ' = ( A ' ) 3 = A 3 [ ( A ' ) k = ( A k ) ' ] H e n c e , i f A i s a s y m m e t r i c m a t r i x , t h e n A 3 i s a s y m m e t r i c m a t r i x .

Q8. If A  is a skew symmetric matrix, then A 2  is a ___.

Sol. 

I f A i s a s k e w s y m m e t r i c m a t r i x , A ' = A ( A 2 ) ' = ( A ' ) 2 = ( A ) 2 = A 2 H e n c e , A 2 i s a s y m m e t r i c m a t r i x .

Q9. If A  and B are square matrices of the same order, then

(i) ( A B ) ' =    ___.
(ii) ( k A ) ' =
 ___ (k is any scalar).
(iii) [ k ( A B ) ] ' =
 ___.

Sol. 

( i ) ( A B ) ' = B ' A ' ( i i ) ( k A ) ' = k . A ' ( i i i ) [ k ( A B ) ] ' = k ( A B ) ' = k ( A ' B ' )

Q10. If A  is skew symmetric, then k A  is a ___ (k is any scalar).

Sol. 

I f A i s a s k e w s y m m e t r i c m a t r i x A ' = A ( k A ) ' = k A ' = k ( A ) = k A H e n c e , k A i s a s k e w s y m m e t r i c m a t r i x .

Q11. If A  and B are symmetric matrices, then

(i) A B B A  is a ___.

(ii) B A 2 A B is a ___.

Sol. 

( i ) L e t P = ( A B B A ) P ' = ( A B B A ) ' = ( A B ) ' ( B A ) ' = B ' A ' A ' B ' [ ( A B ) ' = B ' A ' ] = B A A B [ A ' = A a n d B ' = B ] = ( A B B A ) = P H e n c e , ( A B B A ) i s a s k e w s y m m e t r i c m a t r i x . ( i i ) L e t Q = ( B A 2 A B ) Q ' = ( B A 2 A B ) ' = ( B A ) ' ( 2 A B ) ' = A ' B ' 2 ( A B ) ' [ ( k A ) ' = k A ' ] = A ' B ' 2 B ' A ' = A B 2 B A [ A ' = A a n d B ' = B ] = ( 2 B A A B ) H e n c e , ( B A 2 A B ) i s n e i t h e r a s y m m e t r i c m a t r i x n o r a s k e w s y m m e t r i c m a t r i x .

Q12. If A  is symmetric matrix, then B A B  is ___.

Sol. 

I f A i s a s y m m e t r i c m a t r i x A ' = A L e t P = B ' A B P ' = ( B ' A B ) ' = B ' A ' ( B ' ) ' [ ( A B ) ' = B ' A ' ] = B ' A B [ A ' = A a n d ( B ' ) ' = B ] P ' = P S o , P i s a s y m m e t r i c m a t r i x . H e n c e , B ' A B i s a s y m m e t r i c m a t r i x .

Q13. If A  and B are symmetric matrices of same order, then A B  is symmetric if and only if ___.

Sol. 

( i ) G i v e n t h a t A ' = A a n d B ' = B L e t P = A B P ' = ( A B ) ' = B ' A ' = B A [ A ' = A a n d B ' = B ] = P H e n c e , A B i s s y m m e t r i c i f a n d o n l y i f A B = B A .

Q14. In applying one or more row operations while finding A 1  by elementary row operations, we obtain all zeros in one or more rows, then A 1 ___.

Sol. 

A 1 d o e s n o t e x i s t i f w e a p p l y o n e o r m o r e r o w o p e r a t i o n s w h i l e f i n d i n g A 1 b y e l e m e n t a r y r o w o p e r a t i o n s , o b t a i n a l l z e r o e s i n o n e o r m o r e r o w s .

Q&A Icon
Commonly asked questions
Q:  

___ matrix is both symmetric and skew symmetric matrix.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

N u l l m a t r i x i . e . [ 0 0 0 0 ] o r [ 0 0 0 0 0 0 0 0 0 ] i s b o t h s y m m e t r i c a n d s k e w s y m m e t r i c m a t r i x .

Q:  

Sum of two skew symmetric matrices is always ___ matrix.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t A a n d B b e a n y t w o m a t r i c e s F o r s k e w s y m m e t r i c m a t r i c e s A = A ' ( i ) a n d B = B ' ( i i ) A d d i n g ( i ) a n d ( i i ) w e g e t A + B = A ' B ' A + B = ( A ' + B ' ) , s o A + B i s s k e w s y m m e t r i c m a t r i x . H e n c e , t h e s u m o f t w o s k e w s y m m e t r i c m a t r i c e s i s a l w a y s s k e w s y m m e t r i c m a t r i c e s .

Q:  

The negative of a matrix is obtained by multiplying it by ___.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t A b e a m a t r i x A = 1 . A H e n c e , n e g a t i v e o f a m a t r i x i s o b t a i n e d b y m u l t i p l y i n g i t b y 1 .

Q:  

The product of any matrix by the scalar ___ is the null matrix.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t A b e a n y m a t r i x 0 . A = A . 0 H e n c e , t h e p r o d u c t o f a n y m a t r i x i s b y t h e r s c a l a r 0 i s t h e n u l l m a t r i x .

Q:  

A matrix which is not a square matrix is called a ___ matrix.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

Amatrixwhichisnotasquarematrixiscalledarectangularmatrix.

Q:  

Matrix multiplication is ___ over addition.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

M a t r i x m u l t i p l i c a t i o n i s d i s t r i b u t i v e o v e r a d d i t i o n . L e t A , B , a n d C b e a n y m a t r i c e s . S o , ( i ) A ( B + C ) = A B + A C ( i i ) ( A + B ) C = A C + B C

Q:  

If A  is a symmetric matrix, then A 3  is a ___ matrix.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

L e t A b e a s y m m e t r i c m a t r i x A ' = A ( A 3 ) ' = ( A ' ) 3 = A 3 [ ? ( A ' ) k = ( A k ) ' ] H e n c e , i f A i s a s y m m e t r i c m a t r i x , t h e n A 3 i s a s y m m e t r i c m a t r i x .

Q:  

If A  is a skew symmetric matrix, then A 2  is a ___.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

I f A i s a s k e w s y m m e t r i c m a t r i x , A ' = A ( A 2 ) ' = ( A ' ) 2 = ( A ) 2 = A 2 H e n c e , A 2 i s a s y m m e t r i c m a t r i x .

Q:  

If A  and B are square matrices of the same order, then

(i) ( A B ) ' =    ___.
(ii) ( k A ) ' =
 ___ (k is any scalar).
(iii) [ k ( A B ) ] ' =
 ___.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

( i ) ( A B ) ' = B ' A ' ( i i ) ( k A ) ' = k . A ' ( i i i ) [ k ( A B ) ] ' = k ( A B ) ' = k ( A ' B ' )

Q:  

If A  is skew symmetric, then kA  is a ___ (k is any scalar).

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

I f A i s a s k e w s y m m e t r i c m a t r i x A ' = A ( k A ) ' = k A ' = k ( A ) = k A H e n c e , k A i s a s k e w s y m m e t r i c m a t r i x .

Q:  

If A  and B are symmetric matrices, then

(i) A B B A  is a ___.

(ii) B A 2 A B is a ___.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

( i ) L e t P = ( A B B A ) P ' = ( A B B A ) ' = ( A B ) ' ( B A ) ' = B ' A ' A ' B ' [ ? ( A B ) ' = B ' A ' ] = B A A B [ ? A ' = A a n d B ' = B ] = ( A B B A ) = P H e n c e , ( A B B A ) i s a s k e w s y m m e t r i c m a t r i x . ( i i ) L e t Q = ( B A 2 A B ) Q ' = ( B A 2 A B ) ' = ( B A ) ' ( 2 A B ) ' = A ' B ' 2 ( A B ) ' [ ? ( k A ) ' = k A ' ] = A ' B ' 2 B ' A ' &

Q:  

If A  is symmetric matrix, then BAB  is ___.

A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

I f A i s a s y m m e t r i c m a t r i x A ' = A L e t P = B ' A B P ' = ( B ' A B ) ' = B ' A ' ( B ' ) ' [ ? ( A B ) ' = B ' A ' ] = B ' A B [ ? A ' = A a n d ( B ' ) ' = B ] P ' = P S o , P i s a s y m m e t r i c m a t r i x . H e n c e , B ' A B i s a s y m m e t r i c m a t r i x .

Q:  

If A  and B are symmetric matrices of same order, then AB  is symmetric if and only if ___.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

( i ) G i v e n t h a t A ' = A a n d B ' = B L e t P = A B P ' = ( A B ) ' = B ' A ' = B A [ ? A ' = A a n d B ' = B ] = P H e n c e , A B i s s y m m e t r i c i f a n d o n l y i f A B = B A .

Q:  

In applying one or more row operations while finding A1  by elementary row operations, we obtain all zeros in one or more rows, then A1 ___.

Read more
A: 

This is a Fill in the blanks Type Questions as classified in NCERT Exemplar

A 1 d o e s n o t e x i s t i f w e a p p l y o n e o r m o r e r o w o p e r a t i o n s w h i l e f i n d i n g A 1 b y e l e m e n t a r y r o w o p e r a t i o n s , o b t a i n a l l z e r o e s i n o n e o r m o r e r o w s .

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

Matrices True or False Type Questions

Q1. A matrix denotes a number.

Sol. 

F a l s e . A m a t r i x i s a n a r r a y o f e l e m e n t s , n u m b e r s o r f u n c t i o n s h a v i n g r o w s a n d c o l u m n s .

Q2. Matrices of any order can be added.

Sol. 

F a l s e . T h e m a t r i c e s h a v i n g s a m e o r d e r c a n o n l y b e a d d e d .

Q3. Two matrices are equal if they have the same number of rows and the same number of columns.

Sol. 

F a l s e . T h e t w o m a t r i c e s a r e s a i d t o b e e q u a l i f t h e i r c o r r e s p o n d i n g e l e m e n t s a r e s a m e .

Q4. Matrices of different orders cannot be subtracted

Sol. 

T r u e . F o r a d d i t i o n a n d s u b t r a c t i o n , t h e o r d e r o f t w o m a t r i c e s s h o u l d b e s a m e .

Q5. Matrix addition is associative as well as commutative.

Sol. 

T r u e . I f A , B a n d C a r e t h e m a t r i c e s o f a d d i t i o n t h e n A + ( B + C ) = ( A + B ) + C ( a s s o c i a t i v e ) A + B = B + A ( c o m m u t a t i v e )

Q6. Matrix multiplication is commutative.

Sol. 

F a l s e . Since A B B A i f A B a n d B A a r e w e l l d e f i n e d .

Q7. A square matrix where every element is unity is called an identity matrix.

Sol. 

F a l s e . Since, i n a n i d e n t i t y m a t r i x a l l t h e e l e m e n t s o f p r i n c i p a l d i a g o n a l a r e u n i t y r e s t a r e z e r o . e . g . , A = [ 1 0 0 0 1 0 0 0 1 ] = I 3

Q8. If A  and B  are two square matrices of the same order, then A + B = B + A .

Sol. 

T r u e . I f A a n d B a r e s q u a r e m a t r i c e s o f t h e n t h e i r a d d i t i o n i s c o m m u t a t i v e i . e . , A + B = B + A

Q9. If A  and B are two matrices of the same order, then A B = B A   .

Sol. 

F a l s e . Since s u b t r a c t i o n s o f a n y t w o m a t r i c e s o f t h e s a m e o r d e r i s n o t c o m m u t a t i v e i . e . , A B B A

Q10. If matrix A B = O , then A = O or B = O  or both A  and B  are null matrices.

Sol. 

F a l s e . Since f o r a n y t w o n o n z e r o m a t r i c e s A a n d B , w e m a y g e t A B = 0 .

Q11. Transpose of a column matrix is a column matrix.

Sol. 

Q12. If A  and B are two square matrices of the same order, then A B = B A .

Sol. 

F a l s e . F o r t w o s q u a r e m a t r i c e s A a n d B , A B = B A i s n o t a l w a y s t r u e .

Q13. If each of the three matrices of the same order is symmetric, then their sum is a symmetric matrix.

Sol. 

T r u e . L e t A , B , a n d C b e t h r e e m a t r i c e s o f t h e s a m e o r d e r . G i v e n t h a t A ' = A , B ' = B , a n d C ' = C L e t P = A + B + C P ' = ( A + B + C ) ' = A ' + B ' + C ' = A + B + C = P S o , A + B + C i s a l s o a s y m m e t r i c m a t r i x .

Q14. If A  and B  are any two matrices of the same order, then ( A B ) ' = A B .

Sol. 

F a l s e . Since ( A B ) ' = B ' A ' .

Q15. If  ( A B ) ' = B A  , where  A  and  B  are not square matrices, then the number of rows in  A  is equal to the number of columns in  B  and the number of columns in  A  is equal to the number of rows in  B  .

Sol. 

T r u e . L e t A = [ a i j ] m × n a n d B = [ b i j ] p × q A B i s d e f i n e d w h e n n = P O r d e r o f A B = m × q O r d e r o f ( A B ) ' = q × m O r d e r o f B ' i s q × p a n d o r d e r o f A ' i s n × m B ' A ' i s d e f i n e d w h e n P = n a n d t h e o r d e r o f B ' A ' i s q × m H e n c e , O r d e r o f ( A B ) ' = O r d e r o f B ' A ' i . e . , q × m .

 Q16. If  A  ,  B  , and  C  are square matrices of the same order, then  A B = A C  always implies that  B = C  .

Sol. 

F a l s e . A = [ 1 0 0 0 ] , B = [ 0 0 2 0 ] a n d C = [ 0 0 3 4 ] A B = [ 1 0 0 0 ] [ 0 0 2 0 ] = [ 0 0 0 0 ] A C = [ 1 0 0 0 ] [ 0 0 3 4 ] = [ 0 0 0 0 ] H e r e A B = A C = 0 b u t B C .

Q17. A A  is always a symmetric matrix for any matrix A .

Sol. 

T r u e . L e t P = A A ' P ' = ( A A ' ) ' = ( A ' ) ' . A ' [ ( A B ) ' = B ' A ' ] = A A ' = P S o , P i s a s y m m e t r i c m a t r i x . H e n c e , A A ' i s a l w a y s a s y m m e t r i c m a t r i x .

Q18. If  then A B   and B A  are defined and equal.

Sol. 

Q19. If A  is a skew symmetric matrix, then A 2  is a symmetric matrix.

Sol. 

T r u e . ( A 2 ) ' = ( A ' ) 2 = [ A ] 2 [ A ' = A ] = A 2 S o , A 2 i s a s y m m e t r i c m a t r i x .

Q20. ( A B ) 1 = A 1 B 1 , where A  and B are invertible matrices satisfying the commutative property with respect to multiplication.

Sol. 

T r u e . I f A a n d B a r e i n v e r t i b l e m a t r i c e s o f t h e s a m e o r d e r . ( A B ) 1 = ( B A ) 1 [ A B = B A ] B u t ( A B ) 1 = A 1 B 1 [ G i v e n ] ( B A ) 1 = B 1 A 1 A 1 B 1 = B 1 A 1 A a n d B s a t i s f y c o m m u t a t i v e p r o p e r t y w . r . t m u l t i p l i c a t i o n .

Q&A Icon
Commonly asked questions
Q:  

A matrix denotes a number.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . A m a t r i x i s a n a r r a y o f e l e m e n t s , n u m b e r s o r f u n c t i o n s h a v i n g r o w s a n d c o l u m n s .

Q:  

Matrices of any order can be added.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . T h e t w o m a t r i c e s a r e s a i d t o b e e q u a l i f t h e i r c o r r e s p o n d i n g e l e m e n t s a r e s a m e .

Q:  

Matrices of different orders cannot be subtracted

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . F o r a d d i t i o n a n d s u b t r a c t i o n , t h e o r d e r o f t w o m a t r i c e s s h o u l d b e s a m e .

Q:  

Matrix addition is associative as well as commutative.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . I f A , B a n d C a r e t h e m a t r i c e s o f a d d i t i o n t h e n A + ( B + C ) = ( A + B ) + C ( a s s o c i a t i v e ) A + B = B + A ( c o m m u t a t i v e )

Q:  

Matrix multiplication is commutative.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . SinceABBAifABandBAarewelldefined.

Q:  

A square matrix where every element is unity is called an identity matrix.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . Since, inanidentitymatrixalltheelementsofprincipaldiagonalareunityrestarezero. e . g . , A = [ 1 0 0 0 1 0 0 0 1 ] = I 3

Q:  

Two matrices are equal if they have the same number of rows and the same number of columns.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . T h e t w o m a t r i c e s a r e s a i d t o b e e q u a l i f t h e i r c o r r e s p o n d i n g e l e m e n t s a r e s a m e .

Q:  

If A  and B  are two square matrices of the same order, then A + B = B + A .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . I f A a n d B a r e s q u a r e m a t r i c e s o f t h e n t h e i r a d d i t i o n i s c o m m u t a t i v e i . e . , A + B = B + A

Q:  

If A  and B are two matrices of the same order, then A B = B A  

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . Sincesubtractionsofanytwomatricesofthesameorderisnotcommutativei.e., ABBA

Q:  

If matrix A B = O , then A = O or B = O  or both A  and B  are null matrices.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . SinceforanytwononzeromatricesAandB, wemaygetAB=0.

Q:  

Transpose of a column matrix is a column matrix.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Q:  

If A  and B are two square matrices of the same order, then A B = B A .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . F o r t w o s q u a r e m a t r i c e s A a n d B , A B = B A i s n o t a l w a y s t r u e .

Q:  

If each of the three matrices of the same order is symmetric, then their sum is a symmetric matrix.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . L e t A , B , a n d C b e t h r e e m a t r i c e s o f t h e s a m e o r d e r . G i v e n t h a t A ' = A , B ' = B , a n d C ' = C L e t P = A + B + C P ' = ( A + B + C ) ' = A ' + B ' + C ' = A + B + C = P S o , A + B + C i s a l s o a s y m m e t r i c m a t r i x .

Q:  

If A  and B  are any two matrices of the same order, then ( A B ) ' = A B .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . Since (AB)'=B'A'.

Q:  

If (AB)'=BA , where A and B are not square matrices, then the number of rows in A is equal to the number of columns in B and the number of columns in A is equal to the number of rows in B .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . L e t A = [ a i j ] m × n a n d B = [ b i j ] p × q A B i s d e f i n e d w h e n n = P O r d e r o f A B = m × q O r d e r o f ( A B ) ' = q × m O r d e r o f B ' i s q × p a n d o r d e r o f A ' i s n × m B ' A ' i s d e f i n e d w h e n P = n a n d t h e o r d e r o f B ' A ' i s q × m H e n c e , O r d e r o f ( A B ) ' = O r d e r o f B ' A ' i . e . , q × m .

Q:  

If A , B , and C are square matrices of the same order, then AB=AC always implies that B=C .

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

F a l s e . A = [ 1 0 0 0 ] , B = [ 0 0 2 0 ] a n d C = [ 0 0 3 4 ] A B = [ 1 0 0 0 ] [ 0 0 2 0 ] = [ 0 0 0 0 ] A C = [ 1 0 0 0 ] [ 0 0 3 4 ] = [ 0 0 0 0 ] H e r e A B = A C = 0 b u t B C .

Q:  

A A  is always a symmetric matrix for any matrix A .

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . L e t P = A A ' P ' = ( A A ' ) ' = ( A ' ) ' . A ' [ ? ( A B ) ' = B ' A ' ] = A A ' = P S o , P i s a s y m m e t r i c m a t r i x . H e n c e , A A ' i s a l w a y s a s y m m e t r i c m a t r i x .

Q:  

If  then A B   and B A  are defined and equal.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

Q:  

If A  is a skew symmetric matrix, then A 2  is a symmetric matrix.

A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . ( A 2 ) ' = ( A ' ) 2 = [ A ] 2 [ ? A ' = A ] = A 2 S o , A 2 i s a s y m m e t r i c m a t r i x .

Q:  

( A B ) 1 = A 1 B 1 , where A  and B are invertible matrices satisfying the commutative property with respect to multiplication.

Read more
A: 

This is a True or False Type Questions as classified in NCERT Exemplar

T r u e . I f A a n d B a r e i n v e r t i b l e m a t r i c e s o f t h e s a m e o r d e r . ( A B ) 1 = ( B A ) 1 [ ? A B = B A ] B u t ( A B ) 1 = A 1 B 1 [ G i v e n ] ( B A ) 1 = B 1 A 1 A 1 B 1 = B 1 A 1 A a n d B s a t i s f y c o m m u t a t i v e p r o p e r t y w . r . t m u l t i p l i c a t i o n .

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

24th June 2022 (second shift)

24th June 2022 (second shift)

Q&A Icon
Commonly asked questions
Q:  

Let x * y = x2 + y3 and (x * 1) * 1 = x * (1 * 1). Then a value of 2 s i n 1 ( x 4 + x 2 2 x 4 + x 2 + 2 )  is.

Read more
A: 

(x2+1)*1=x*2

(x2+1)2+1=x2+8x2=2

2sin1 (x4+x22x4+x2+2)=2sin1 (12)=π3

Q:  

The sum of all the real roots of the equation (e2x4)(6e2x5ex+1)=0is

A: 

e2x4=0or6e2x5ex+1=0

x=ln2x=ln (13), ln (12)

ln3, ln2

Q:  

Let the system of linear equations

x + y + αz=2

3x + y + z = 4

x + 2z = 1

have a unique solution (x,y,z). If (α,x),(y,α)and(x,y) are collinear points, then the sum of absolute values of all possible values of α is

Read more
A: 

x + y + az = 2………… (i)

3x + y + z = 4 ………… (ii)

x + 2z = 1 ……………. (iii)

x = 1, y = 1, z = 0

(for unique solution a 3  

( α , 1 ) , ( 1 , α ) a n d ( 1 , 1 ) are collinear.

α 1 1 α = 1 α 1 1 1 α 2 = 0 α = ± 1                

Sum of absolute value = 2

Q:  

Let x,y > 0. If x3y2 = 215, then the least value of 3x + 2y is

A: 

 x1y>0andx3y2=215

AMGM

3x+2y5 (x3y2)15

3x+2y40

Q:  

Let f(x) {sin(x[x])x[x],x(2,1)max{2x,3[|x|]},|x|<11,otherwise

where [t] denotes greatest integer t. If m is the number of points where f is not continuous and n is the number of points where f is not differentiable, then the ordered pair (m, n) is

Read more
A: 

f (x)= {sin (x+2)x+2, x (2, 1)0, x (1, 0]2x, x (0, 1)1, otherwise

LHD=Lth0f (0h)f (0)h=0

RHD=Lth0f (0+h)f (0)h=2

Hence f (x) is not differentiable at x = 1, 0, 1

m=2, n=3

Q:  

The value of the integral π/2π/2dx(1+ex)(sin6x+cos6x)isequalto

A: 

l=π2π2dx (1+ex) (sin6x+cos6x) ……. (i)

=20dt4+t2=2 (tan1 (t2))0=π

Q:  

l i m x ( n 2 ( n 2 + 1 ) ( n + 1 ) + n 2 ( n 2 + 4 ) ( n + 2 ) + n 2 ( n 2 + 9 ) ( n + 3 ) + . . . + n 2 ( n 2 + n 2 ) ( n + n ) ) i s e q u a l t o

A: 

S = Ltnr=1nn2 (n2+r2) (n+r)

π8+14ln2

Q:  

A particle is moving in the xy-plane along a curve C passing through the point (3, 3). The tangent to the curve C at the point P meets the x-axis at Q. If the y-axis bisects the segment PQ, then C is a parabola with

Read more
A: 

Equation of tangent at P (x, y) is Y = dydx (Xx)

A/q, 2xydxdy=02dyy=dxx

2lny=lnx+lncy2=xc

It passes through (3, 3), c = 3

y2=3x Length of latus rectum = 3

Q:  

Let the maximum area of the triangle that can be inscribed in the ellipse x2a2+y24=1,a>2, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the y-axis, be 63 . Then the eccentricity of the ellipse is

Read more
A: 

 x2a2+y24=1

Δ=12×a (1+cosθ).4sinθ

ΔmaxΔ=63a=4

e=32

 
Q:  

Let the area of the triangle with vertices A (1,α),B(α,0)C(0,α) be 4 sq. units. If the points (α,α),(α,α)and(α2,β) are collinear, then β is equal to

Read more
A: 

Δ=412|1α1α010α1|=4

α=±8

(α, α), (α, α)and (α2, β) are collinear.

|αα1αα1α2β1|=0β=64

Q:  

The number of distinct real roots of the equation x7 – 7x – 2 = 0 is

A: 

f (x)=x77x2

f' (x)=7x67f' (x)=0, x=±1

f (1)=<0andf (1)>0

Hence number of real roots of f (x) = 0 are 3.

Q:  

A random variable X has the following probability distribution

A: 

 ?  x is a random variable.

k+2k+4k+6k+8k=1k=121

P ( (1<x<4)|x2)=4k7k=47

Q:  

The number of solutions of the equation cos(x+π3)cos(π3x)=14cos22x,x[3π,3π]is:

A: 

cos (x+π3)cos (π3x)=14cos22x

x=3π, 2π, π, 0, π, 2π, 3π

 total number of solution = 7.

Q:  

If the shortest distance between the lines x12=y23=z3λ and x21=y44=z55is13, then the sum of all possible values of λ is

Read more
A: 

S. D. = 13

b1×b2=|i^j^k^23λ145|=i^ (154λ)+j^ (λ10)+k^ (5)

| (i^2j^2k^). { (154λ)i^+ (λ10)j^+5k^}| (154λ)2+ (λ10)2+25=13

λ=16

Q:  

Let the points on the plane P be equidistance from the points (–4, 2, 1) and (2, –2, 3). Then the acute angle between the plane P and the plane 2x + y + 3z = 1 is

Read more
A: 

Let P (x, y, z) be any point on plane P1 then

(x+4)2+ (y2)2+ (z1)2= (x2)2+ (y+2)2+ (z3)2

cosθ=|62+3|14θ=π3

Q:  

Let a^ and b^ be two unit vectors such that |(a^+b^)+2(a^×b^)| = 2. If θ(0,π) is the angle between a^andb^ , then among the statements:

(S1):2|a^×b^|=|a^b^|

(S1) : The projection of a^on(a^+b^)is12

Read more
A: 

|a+b+2 (a×b)|=2, θ (0, π)

squaring on both sides, we get = 2π3

where θ is angle between a^andb^.

2|a^×b^|=3=|a^b^|, S1 is correct.

and projection of a^ona^+b^=|a^. (a^+b^)|a^+b^||=12

So (S2) is correct.

Q:  

If y = tan-1 (sec x3 tanx3), π2<x3<3π2,then

A: 

Letx3=θθ2 (π4, 3π4)

y=tan1 (secθtanθ)

tan1 (1sinθcosθ)

dydx=3x22d2ydx2=3x

x2d2ydx26y+3π2=0x2y116y+3π2=0

Q:  

Consider the following statements:

A : Rishi is a judge.

B : Rishi is honest.

C : Rishi is not arrogant.

The negation of the statement “if Rishi is a judge and he is not arrogant, then he is honest” is

Read more
A: 

? given statement is

(AC)B then its negation is  { (AC)B}

Q:  

The slope of normal at any point (x,y), X > 0, y > 0 on the curve y = y(x) is given by x2xyx2y21. If the curve passes through the point (1, 1), then e.y (e) is equal to

Read more
A: 

 ? dxdy=x2xyx2y21

dydx=xyx2y21x2

Letxy=vxdydx+y=dvdx

Put x = 1, y = 1 tan1=cc=π4

tan1 (xy)=lnx=π4

e (y (e))=tan (1+π4)=tan1+11tan1

Q:  

Let λ be the largest value of λ for which the function fλ(x)=4λx336λx2+36x+48 is increasing for all xR. Then fλ.(1)+fλ.(1) is equal to

Read more
A: 

? fλ (x)=4λx336λx2+36x+48

fλ (x)=12 (λx26λx+3)

For increasing fλ (x)0

fλ* (x)=43x312x2+36x+48fλ* (1)+fλ* (1)=7312112=72

Q:  

Let S = {zC:|z3|1andz(4+3i)24}. If α+iβ is the point in S which in closest to 4i, then 25 (α+β) is equal to

Read more
A: 

Circle |z3|1 (x3)2+y21

and line z (4+3i)+z¯ (43i)24

4x3y12slope=tanθ=43

Q:  

Let S={(1a0b)a,b{1,2,3,...100}}; and let Tn = {AS:An(n+1)=I}. Then the number of elements in n=1100Tnis............

A: 

 S= { (1a0b), a, b1, 2, 3, .....100

A= (1a0b) then even power of A as A =  (1001).

If b = 1 & a {1, 2, 3.....100} and n (n + 1) is always even

T1, T2, T3, ........, Tn are all 1 for b = 1 and each value of a.

n=11000Tn=100

Q:  

The number of 7-digit numbers which are multiples of 1 and are formed using all the digits 1, 2, 3, 4, 5, 7 and 9 is

Read more
A: 

Sum of all given numbers = 31

Difference between odd and even positions must be 0,11 or 22 but 0 and 22 are not possible.

 Hence 11 is possible.

This is possible only when either 1, 2, 3, 4 if filled in odd places in order and remaining in other order.

Hence 2, 3, 5 or 7, 2, 1 or 4, 5, 1 at even places.

 Total possible ways = (4! × 3!) × 4 = 576

Q:  

The sum of all elements of the set {α{1,2,...,100}:HFC(α,24)=1} is

A: 

{a (1, 2, 3, ......, 100):HCF (a, 24)=1}

HCF of (a, 24) = 1  a = 1, 5, 7, 11, 13, 17, 19, 23 sum of these numbers = 96

 There are four such blocks and a number 97 is there upto 100.

 complete sum = 96 + (24 × 8 + 96) + (48 × 8 + 96) + (72 × 8 + 96) + 97 = 1633

Q:  

The remainder on diving 1 + 3 + 32 + 33 + …. + 32021 by 50 is

A: 

S = 1 + 3 + 32 + 33 + ….+ 32021   = 3 2 0 2 2 1 2 = 1 2 [ a 1 0 1 1 1 ]

= 1 2 [ 9 1 0 1 1 1 ] = 1 2 [ 1 0 0 k + 1 0 1 1 0 1 1 ]                          

= 50k1 + 4

Remainder = 4

Q:  

The area (in sq. units) of region enclosed between the parabola y2 = 2x and the line x + y = 4 is

A: 

Required area

42 (4yy22)dy

(4yy22y36)42=18squnits

Q:  

Let a circle C : (xh)2+(yk)2=r2,k>0, touch the axis (1,0). If the line x + y = 0 intersects the circle C at P and Q such that the length of the chord PQ is 2, then the value of h + k + r is equal to

Read more
A: 

OM2 = OP2 = PM2

| 1 + r 2 | = r 2 1

r = 3

equation of circle is  (x1)2+ (y3)2=32

h+k+r=7

Q:  

In an examination, there are 1- true-false type questions. Out of 10, at student can guess the answer of 4 questions correctly with probability 34 and the remaining 6 questions correctly with probability 14 . If the probability that the student guesses the answer of exactly 8 questions correctly out of 10 is 27k410,then k is equal to

Read more
A: 

Since student guesses only two wrong. So there are three possibilities

(i) both wrong in section A

(ii) both wrong in section B

(iii) one wrong in each section A and B.

 Required possibilities =

=4C4×6C4(34)4×(14)4(34)2+4C3×6C5(34)3(14)5×14×34 +4C2×6C6×(34)2(14)2×(14)6

=27410[15×27+24×3+2]=27×479410

Q:  

Let the hyperbola H:x2a2y2=1 and the ellipse E : 3x2 + 4y2 = 12 be such that the length of latus rectum of H is equal to the length of latus rectum of E. If eH and eE are the eccentricities of H and E respectively, then the value of 12(eH2+eE2) is equal to

Read more
A: 

 x2a2y21=1

Length of latus rectum = 2a

andx24+y23=1

length of latus rectum = 62 = 3

? 2a=3a=23

12 (eH2+eH2)=12 [ (1+94)+ (134)]=12 [134+14] = 12 × 144=42

Q:  

Let P1 be a parabola with vertex (3, 2) and focus (4, 4) and P2 be its mirror image with respect to the line x + 2y = 6. Then the directrix P2 is x + 2y =.............

Read more
A: 

S (4, 4) and V (3, 2)

 point of intersection of directrix with axis of parabola is A (2, 0)

Image of A (2, 0) with respect to line

x+2y=6isB (x2, y2)

x221=y2022 (2+06)5

B (185, 165)

Point B is point of intersection of directrix with axes of parabola P2.

x+2y=λ

B (185, 165) lies on the line x + 2y = λ  λ = 1 8 5 + 3 2 5 = 1 0

Maths NCERT Exemplar Solutions Class 12th Chapter Three Logo

JEE Mains Solutions 2022,28th june , Maths,Second shift

JEE Mains Solutions 2022,28th june , Maths,Second shift

Q&A Icon
Commonly asked questions
Q:  

Let R1 = { ( a , b ) N × N : | a b | 1 3 } a n d  

R2 =   { ( a , b ) N × N : | a b | 1 3 } . Then on N :

Read more
A: 

R1 { ( a , 1 ) N × N : | a b | 1 3 }

  ( a , a ) R 1 a s | a a | 1 3 ( R e f l e x i v e )

( a , b ) & ( b , a ) R 1 a s | a b | = | b a | ( s y m m e t r i c ) .

But it is not necessary that if (a,b) & (b, c)  R,then(a,c)R

Eg   ( 2 1 , 1 0 ) R & ( 1 0 , 1 ) R b u t ( 2 1 , 1 ) R 1

R2 =   { ( a , b ) N × N : | a b | 1 3 R 2 N o t e q u i v a l e n c e s o l u t o i n . }

( a , b ) & ( b , a ) R 2 a s | a b | = | b a |

But it is not necessary that if (a, b) & (b, c)  R 2  then (a, c) also R 2 .

Eg – (21, 1)   R 2 & ( 1 , 8 ) R 2 b u t ( 2 1 , 8 ) R 2

Q:  

let f(x) be a quadratic polynomial such that f(-2) + f(3) = 0. If one of the roots of f(x) = 0 is -1, then the sum of the roots of f(x) = 0 is equal to:

Read more
A: 

f ( 2 ) + f ( 3 ) = 0 . One root of f (x) = 0 is (-1)

Let’s assume other root to be a

f ( x ) = a ( x + 1 ) ( x α )

Given that f (-2) + f (3) = 0

a (-2 + 1) (-2 -a) + a (3 + 1) (3 - a) = 0

Þ 14 -3a = 0 Þ a =    1 4 3

sum of roots =   1 4 3 1 = 1 1 3

Q:  

The number of ways to distribute 30 identical candies among four children C1, C2, C3 and C4 so that C2 receives atleast 4 and atmost 7 candies, C3 receives atleast 2 and atmost 6 candies, is equal to:

Read more
A: 

Let the number of chocolates given to C1, C2, C3 & C4 be a, b, c, d respectively.

Given 4   b 7

2 c 6

Now using these the maximum number of chocolates that can be given to C1 or C4 is 24 (where b & c are given 2 & 4 chocolates).

0 a 2 4

0 d 2 4

& a + b + c + d = 30

So, total possible solution to the above equation.

Coefficient of x30 in.

( x 0 + x + x 2 + . . . . + x 2 4 ) ( x 4 + x 5 + . . . . + x 7 ) ( x 2 + x 3 + . . . . + x 6 ) ( x 0 + x + x 2 + . . . . + x 2 4 )

(1+....+x24)2(x4)(1+x+....+x3)×x2(1+x+....+x4)

= ( x 5 6 2 x 3 1 + x 6 ) × ( x 9 x 4 x 5 + 1 ) × ( x 1 ) 4

x56 & x31 can never give x30 so we discard them.

x 6 × x 9 × ( x 1 ) 4 1 5 + 4 1 ? C 4 1 = 1 8 ? C 3

Coefficient x30 ® 18C323C322C3 + 27C3

=   1 8 × 1 7 × 1 6 6 2 3 × 2 2 × 2 1 6 2 2 × 2 1 × 2 0 6 + 2 7 × 2 6 × 2 5 6

= 430

Q:  

The term independent of x in the expansion of   ( 1 x 2 + 3 x 3 ) ( 5 2 x 3 1 5 x 2 ) 1 1 , x 0 i s :

Read more
A: 

  ( 1 x 2 + 3 x 3 ) ( 5 2 x 3 1 5 x 2 ) 1 1 , x 0

(r + 1)th term for expansion of   ( 5 2 x 3 1 5 x 2 ) 1 1

  n – r = x3

r = y   0 x , y 1 1 s h o u l d b e n a t u r a l n u m b e r .

11Cy   × ( 5 2 ) x × ( 1 5 ) y × x ( 3 x 2 y )

for term to be independent of x, power of x should be zero.

(3x – 2y) = 0 (when 1 is multiplied).

3x + 3y = 33

y = 3 3 5 ( N o s o l u t i o n )  

3x – 2y + 2 = 0 where (-x2) is multiplied).

3x +  3y = 33

y = 7, x = 4

3 x 2 y + 3 = 0 3 x + 3 y = 3 3 }

  coefficient of term independent of x.

( 1 ) × 1 1 ? C 7 × ( 5 2 ) 4 × ( 1 5 ) 7

= 3 3 2 0 0

Q:  

If n arithmetic means are inserted between a and 100 such that the ratio of the first mean to the first mean to the last mean is 1 : 7 and a + n = 33, then the value of n is:

Read more
A: 

  a + a1……an, 100               n arithmetic mean 100

a + n = 33 ……. (i)

( a 1 a n = 1 7 )

( a + d ) ( 1 0 0 d ) = 7 7

7a + 8d = 100…………… (ii)

a + (n + 1)d = 100………………. (iiI)

Solving these equations (i), (ii) & (iii), we get

n = 23 & d =    1 5 4

a = 10

Q:  

Let f, g : R ® R be functions defined by

f ( x ) = { [ x ] , x < 0 | 1 x | , x 0 a n d g ( x ) = { e x x , x < 0 ( x 1 ) 2 1 , x 0       

where [x] denote the greatest integer less than or equal to x. Then, the function fog is discontinuous at exactly:

Read more
A: 

f ( x ) = { [ x ] , x < 0 | 1 x | , x 0 g ( x ) = { c x x , x < 0 ( x 1 ) 2 1 , x 0

fog

f o g ( [ e x x ] , ( e x x < 0 ) ( x < 0 ) [ ( x 1 ) 2 1 ] ( x 1 ) 2 1 < 0 x 0 | 1 e x + x | , e x x 0 x < 0 | 1 ( x + 1 ) 2 + 1 | , ( x 1 ) 2 1 0 x 0 , x ( 2 , ) (

 Not possible as of inequalities give ? .  

ex – x < 0, x < 0                 (x – 1)2 – 1 < 0

Not possible                     (x – 1 + 1)(x – 1 – 1) < 0

(x)(x – 2) < 0

  ( 0 , 2 )

continuous  x < 0

f o g { | 1 e x + x | , x < 0 | 1 ( x 1 ) 2 + 1 | , x = 0 | 1 ( x 1 ) 2 + 1 | , x 2 Discontinuous at 0

continuous   x

   fog is discontinuous at 0

Q:  

Let f : R ® R be a differentiable function such that f ( π 4 ) = 2 , f ( π 4 ) = 0 a n d f ' ( π 2 ) = 1  and let g ( x ) = x π / 4 ( f ' ( t ) s e c t + s e c t f ( t ) ) d t f o r x [ π 4 , π 2 ) .  Then l i m x ( π 2 ) g ( x )  is equal to:

Read more
A: 

  f ( r 4 ) = 2 , f ( r 2 ) = 0 & f ' ( r 2 ) = 1

g(x)   ( f ' ( t ) s e c t + t a n t s e c t f ( t ) ) d t

= [ f ( t ) s e c t ] x π / 4

  2 × 2 f ( x ) s e c x

= 2 c o s x f ( x ) c o s x

  2 s i n x + 1 s i n x = 3

Q:  

Let f : R® R be a continuous function satisfying f(x) + f(x + k) = n, for all x  R where k > 0 and n is a positive integer. If I 1 = 0 4 n k f ( x ) d x a n d I 2 = k 3 k f ( x ) d x , t h e n :  

Read more
A: 

  f ( x ) + f ( x + k ) = n x R , & k > 0 . . . . . . . . . . . . ( i )

Replace x by x + k.          

f ( x + k ) + f ( x + 2 k ) = n . . . . . . . . . . . . . . . ( i i )

From (i) & (ii), f(x + 2k) = f(x).

f ( x )  is periodic with period = 2k.

I 1 = 0 4 n k f ( x ) d x = 2 x 0 2 k f ( x ) d x . . . . . . . . . . . . . . . . . . . ( i i )

I 2 = k 3 k f ( x ) d x put x = t + k

= 2 k 2 k t ( t + k ) d t = 2 0 2 k f ( t + k ) d t

= 2 n 0 2 k n d x = 4 n 2 k .

               

               

Q:  

The area of the bounded region enclosed by the curve y = 3 | x 1 2 | | x + 1 | -  and the x-axis is:

Read more
A: 

  y = 3 ? | x ? 1 2 | = | x + 1 |

Graph

Area =   ( 1 2 * 3 2 * 3 4 ) * 2 + 3 2 * 3 2 = 3 2 * 3 2 * 3 2 = 2 7 8

                                                         

Q:  

Let x = x(y) be the solution of the differential equation 2y e x / y 2 d x + ( y 2 4 x e x / y 2 ) d y = 0  such that x(1) = 0. Then, x(e) is equal to:

Read more
A: 

2 y e x / y 2 d x + ( y 2 4 x e x / y 2 ) d y = 0

  2 e 2 / y 2 ( y d x 2 x d y ) + y 2 d y = 0            

2 e x / y 2 d ( x y 2 ) + d y y = 0

Integrating   2 e x / y 2 + I n y = c

y = 1, n = 0  c = 2

  2 e x / y 2 + I n y = 2  

y = e 2 e x / e 2 + 1 = 2

x = -e2 In2

Q:  

Let the lope of the tangent to a curve y = f(x) at (x,y) be given by 2 tan x (cos x – y). If the curve passes through the point ( π 4 , 0 ) , then the value of 0 π / 2 y d x  is equal to:

Read more
A: 

d y d x + 2 y t a n x = 2 s i n x  

  I . F . = e 2 t a n x d x = s e c 2 x             

 Solution y sec2x =   2 s i n x s e c 2 x d x = 2 s e c x t a n x d x

y sec2 x = 2sec x + c

y = 2 cos x + c cos2x passes ( π 4 , 0 ) = B     C =   2 2

y = 2 cos x  2 2 c o s 2 x 0 π / 2 y d x = 2 π 2                              

Q:  

Let a triangle be bounded by the lines L1 : 2x + 5y = 10; L2 : -4x + 3y = 12 and the line L3, which passes through the point P(2, 3), intersects L2 at A and L1 at B. If the point P divides the line-segment AB, internally in the nation 1 :3, then the area of the triangle is equal to:

Read more
A: 
Kindly go through the solution

 

Q:  

Let a > 0, b > 0. Let a and  respectively be the eccentricity and length of the latus rectum of the hyperbola x 2 a 2 y 2 b 2 = 1 .  Let e’ and l ' respectively be the eccentricity and length of the latus rectum of its conjugate hyperbola. If e 2 = 1 1 1 4 l a n d ( e ' ) 2 = 1 1 8 l ' , then the value of 77a + 44b is equal to

Read more
A: 

x 2 a 2 y 2 b 2 = 1

e = 1 + b 2 a 2 e ' = 1 + a 2 b 2

l = 2 b 2 a l ' = 2 a 2 b

( 1 + b 2 a 2 ) = 1 1 1 4 × 2 b 2 a ( 1 + a 2 b 2 ) = 1 1 8 × 2 a 2 b

7 × { ( 7 b 4 ) 2 + b 2 } = 1 1 × b 2 × 7 b 4 a × 7 7 = 6 5

65b2 = 44b3

65 = b × 44

7 7 a + 4 4 b = 6 5 × 2 = 1 3 0

Q:  

Let a = α i ^ + 2 j ^ k ^ a n d b = 2 i ^ + α j ^ + k ^ , w h e r e α R .  If the area of the parallelogram whose adjacent sides are represented by the vectors   a a n d b i s 1 5 ( α 2 + 4 ) , then the value of   2 | a | 2 + ( a . b ) | b | 2 is equal to:

Read more
A: 

a = α i ^ + 2 j ^ k ^ & b = 2 i ^ + α j ^ + k ^

| a × b | = 1 5 ( a 2 + 4 )

2 | a | 2 + ( a . b ) | b | 2 = ?

a . b = | a | | b | c o s θ

c o s θ = 1 ( a 2 + 5 ) | s i n θ | = ( a 2 + 5 ) 2 1 ( a 2 + 5 )

| a × b | = | a ? | × | b | × | s i n θ |

= ( a 5 + 5 ) × ( a 2 + 5 ) 2 1 ( a 2 + 5 ) = 1 5 ( a 2 + 4 )

( a 2 + 5 ) 2 1 = 1 5 ( a 2 + 4 )

( α = ± 3 )

2 | a | 2 + ( a . b ) | b | 2

= 2 ( a 2 + 5 ) ( a 2 + 5 )

( a 2 + 5 ) = 1 4

Q:  

If vertex of a parabola is (2, -1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is:

Read more
A: 

 

a = | 4 . 2 3 ( 1 ) 2 1 5 |

= | 8 + 3 2 1 5 | = 2

L = 4 a = 8

Q:  

Let the plane ax + by + cz = d pass through (2, 3, -5) and its perpendicular to the planes

2x + y – 5z = 10 and  3x + 5y – 7z = 12.

If a, b, c, d are integers d > 0 and  then the value of a + 7b + c + 20d is equal to:

Read more
A: 

ax + by + cz = d

2a + 3b – 5c = d               2a + 3b – 5c = d …………….(v)

Putting (i) & (iv) in (v) we get a = -9d.

In conditions

( 2 i ^ + j ^ 5 k ^ ) , ( a i ^ + b j ^ + c k ^ ) = 0

2b = d …………...(i) d > 0

2a + b – 5c = 0                  2a + 3b – 5c = d   | a | , | b | , | c | , d g . c . d           

  α 2

α 2 = 1 α = 2

( 3 i ^ + 5 j ^ 7 k ^ ) . ( a i ^ + b j ^ + c k ^ ) = 0

3a + 5b – 7c = 0) ×   4 7 . . . . . . . . . . . . . . . . . . . ( i i i )

a = 1 8 , b = 1

c = -7, d = 2

(iii)…(ii) ® 2a + 3b   3 3 c 7 = 0

2a + 3b =  3 3 7 c c = 7 2 d . . . . . . . . . . . . . . . . . ( i v )

Putting values

a + 7b + c + 20d = 22

Q:  

The probability that a randomly chosen one-one function from the set { a , b , c , d } to the set { 1 , 2 , 3 , 4 , 5 } satisfies f(a) + 2f(b) – f(c)  = f(d) is:

Read more
A: 

No of one – one functions ® 5P4 = 120

f(a) + 2f(b) – f(c) = f(d)  { 1 , 2 , 3 , 4 , 5 }                   

2f(b) = f(d) + f(c) – f(a)

So, f(d) + f(c) – f(a) should be even.

Only possibilities of        f(d)        f(c)        f(a)       

Not possible since           E            E            E            E - even, O – Odd

function is one one         E            O           O          

O        O E

O           E            O

Case (i)

f(d)        f(c)        f(a)

E            O           O

2            1            3            similarly we write cases for f(d) = 4

2            1            5            413

2            3            5            431

2            5            1            435

2            3            1            453

2            5            3            415

4512222asdf=fhf=kjhfjkdfh45654hdfkjdhjh

Case (ii)

O           O           E            O           O           E

1            5            2            1            5            4

5            1            2            5            1            4

3            1            2            1            3            4

1            3            2            3            1            4

3            5            2            5            3            4

5            3            2        &nb

Q:  

The value of limn6tan{r=1ntan1(1r2+3r+3)} is equal to:

A: 

l i m n 6 t a n { r = 1 n t a n 1 ( 1 r 2 + 3 r + 3 ) }

= l i m n 6 t a n { r = 1 n t a n 1 ( ( r + 2 ) ( r + 1 ) 1 + ( r + 2 ) ( r + 1 ) ) }

= l i m n 6 t a n { r 2 t a n 1 ( 2 ) }

6 × 1 2 = 3

Q:  

Let a be a vector which is perpendicular to the vector 3 i ^ + 1 2 j ^ + 2 k ^ . If a × ( 2 i ^ + k ^ ) = 2 i ^ 1 3 j ^ 4 k ^ , then the projection of the vector a on the vector 2 i ^ + 2 j ^ + k ^ is:

Read more
A: 

  a t o 3 i ^ + 1 2 j ^ + 2 k ^ a × ( 2 i ^ + k ^ ) = 2 i ^ 1 3 j ^ 4 k ^                           

a ( 3 i ^ + 1 2 j ^ + 2 k ^ ) = 0 ( x i + y j ^ + z k ^ ) × ( 2 i ^ + k ^ )                               

Let   a = ( x i ^ + y j ^ + 2 k ^ )

( x i ^ + y j ^ + z k ^ ) . ( 3 i ^ + 1 2 j ^ + 2 k ^ ) = 0 = | i j k x y z 2 0 1 |     

3 x + y 2 + 2 z = 0 = i ( y 0 ) j ( x 2 z ) + k ( x . 0 2 y )                            

4x – 12 = 0                                       y = 2

x = 3

z = -5

x -2z = 13

a = ( 3 i ^ + 2 j ^ 5 k ^ )

a b | b | = | a c o s θ | b = 2 i ^ + 2 j ^ + k ^ a i ^ = 6 + 4 5 = 5

a = 3 i ^ + 2 j ^ 5 k

( 5 3 ) = | a c o s θ |

               

                                                                                 

                                                                         

               

Q:  

 If cot a = 1 and sec b = 5 3 , where   π < α < 3 π 2 a n d π 2 < β < π , then the value of tan(a + b) and the quadrant in which a + b lies, respectively are:

Read more
A: 

cota = 1        & secβ =   5 3

< <        3 π 2  secβ =   5 3

α = ( π + π 4 )  cosβ = 3 5 = c o s ( 1 8 0 5 3 )  

tanb =  4 3  

tan(α + β) =   t a n α + t a n β 1 t a n α t a n β

A 1 4 & 4 t h q u a d r a n t .

= 1 4 3 1 + 4 3 = 1 7

1 4 & 4 t h q u a d r a n t .

               

               

               

Q:  

Let the image of the point P(1, 2, 3) in the line L : x 6 3 = y 1 2 = z 2 3  be Q L e t R ( α , β , γ ) .  be a point that divides internally the line segment PQ in the ration 1 : 3. Then the value of 2 2 ( α + β + γ )  is equal to………….

Read more
A: 

Any point on line L is

M (3r + 6, 2r + 1, 3r + 2)                                                          

P M r t o L          

3 ( 3 r + 5 ) + 2 ( 2 r 1 ) + 3 ( 3 r 1 ) = 0          

r = 5 1 1

 

Q:  

Suppose a class has 7 students. The average marks of these students in the mathematics examination is 62, and their variance is 20. A student fails in the examination if he/she gets less than 50 marks, then in worst case, the number of students can fail is…………..

Read more
A: 

1 7 i = 1 7 ( x i 6 2 ) 2 = 2 0 x ¯ = 6 2      


i = 1 7 ( x i 6 2 ) 2
= 140……………… (i)

 If any one student get less 50 marks then   ( x i 6 2 ) 2 1 4 4

but    i = 1 7 ( x i 6 2 ) 2 = 1 4 0

both condition cannot satisfy together hence no students fails.

Q:  

If one of the diameters of the circle x 2 + y 2 2 2 x 6 2 y + 1 4 = 0  is a chord of circle. ( x 2 2 ) 2 + ( y 2 2 ) 2 = r 2 ,  then the value of r2 is equal to…………….

Read more
A: 

  x 2 + y 2 2 2 x 6 2 y + 1 4 = 0

 centre ( 2 , 3 2 )

radius  ( ( 2 ) 2 + ( 3 2 ) 2 1 4 ) 1 / 2

= ( 2 + 1 8 1 4 ) 1 / 2 = ( 6 )

( x 2 2 ) 2 + ( y 2 2 ) 2 = r 2

centre  ( 2 2 , 2 2 )

OA = ( 2 2 2 ) 2 + ( 2 2 3 2 ) 2 = 2 + 2 = 2                  

r2 = ( 6 ) 2 + ( 2 ) 2 = 6 + 4 = 1 0  

 

Q:  

If l i m x 1 s i n ( 3 x 2 4 x + 1 ) x 2 + 1 2 x 3 7 x 2 + a x + b = 2 , then the value of (a – b) is equal to………….

A: 

l i m x 1 s i n ( 3 x 2 4 x + 1 ) x 2 + 1 2 x 3 7 x 2 + a x + b = 2

For this limit to be defined 2x3 – 7x2 + ax + b should also trend to 0 or x ® 1.

2 . ( 1 ) 3 7 ( 1 ) 2 + a 1 + b = 0

 2 – 7 + (a + b) = 0

(a + b) = 5 …………….(i)

Now this becomes % form  we apply L’lopital rule

l i m x 1 ( 3 x 2 4 x + 1 ) x 2 + 1 2 x 3 7 x 2 + a x + b = l i m x 1 c o s ( 3 x 2 4 x + 1 ) ( 6 x 4 ) 2 x 6 x 2 1 4 x + a

Now the numerator again ® 0 as x = 1

 6x2 – 14x + a ® 0 as x = 1

6 . (1)2 – 14 + a = 0

a = 8 …………….(ii)

a + b = 5  a b = 8 ( 3 ) = 1 1       

(b = -3) ® from (i) & (ii)

Q:  

Let for n = 1, 2,……, 50, Sn be the sum of the infinite geometric progression whose first term is n2 and whose common ratio is  Then the value of 1 2 6 + n = 1 5 0 ( S n + 2 n + 1 n 1 )  is equal to…………..

Read more
A: 

S n = n 2 1 1 ( n + 1 ) 2 = n ( n + 1 ) 2 ( n + 2 ) = ( n + 1 ) 2 2 ( n + 1 ) + 2 2 ( n + 2 )

1 2 6 + n = 1 5 0 ( S n + 2 ( n + 1 ) ( n + 1 ) ) = 1 2 6 + n = 1 5 0 ( n + 1 ) 2 3 ( n + 1 ) + 2 + 2 ( 1 ( n + 1 ) 1 ( n + 2 ) )

= 1 2 6 + 4 5 5 2 5 3 × 1 3 2 5 + 2 × 5 0 + 2 ( 1 2 1 5 2 )

= 1 2 6 + 4 1 5 5 0 + 1 0 0 + 1 1 2 6 = 4 1 6 5 1

Q:  

If the system of linear equations

 2x – 3y = γ  = 5,

aX + 5y = b + 1, where   α , β , γ R has infinitely many solutions, then the value of | 9 α + 3 β + 5 γ |  is equal to…………..

Read more
A: 

2 x 3 y = γ + 5 α x + 5 y = ( β + 1 ) } i n f i n i t e l y m a n y s o l u t i o n

2 α = 3 5 = ( γ + 5 β + 1 )

(i) 2 α = 3 5 = γ + 5 β + 1

α = 5 × 2 3 5x + 25 = -3β - 3

5 γ + 3 β = 2 8

| 9 α + 5 γ + 3 β | = | 9 × 1 0 3 2 8 |

= | 3 0 2 8 | = 5 8

Q:  

Let A = ( 1 + i 1 i 0 )  where i   i = 1 . Then, the number of elements in the set { n { 1 , 2 , . . . . , 1 0 0 } : A n = A }  is…………….

Read more
A: 

( 1 + i 1 i 0 )

A 2 = ( 1 + i 1 i 0 ) ( 1 + i 1 i 0 ) = ( i 1 + i 1 i i )

A 4 = ( i 1 + i 1 i i ) ( i 1 + i 1 i i ) = ( 1 0 0 1 )

A 5 = A

A9 = A

f o r n = 1 , 5 , 9 , . . . . . , 9 7

total possible values of n = 25

Q:  

Sum of squares of modulus of all the complex numbers z satisfying z ¯ = i z 2 + z 2 z  is equal to…………..

Read more
A: 

z ˜ = i z 2 + z 2 z

z + Z ¯ = z 2 ( i + 1 )

z + Z ¯ = z 2 ( i + 1 ) Let z be equal to (x + iy)

(x + iy) + (x – iy) = (x + iy)2 (i + 1)

2 x = ( x 2 y 2 + 2 i x y ) ( i + 1 )               

Equating the real & in eg part.

( x 2 y 2 + 2 i x y ) = 0 . . . . . . . . . ( i )

( x 2 y 2 2 x y ) = ( 2 x ) . . . . . . . . . . . . . . ( i i )               

(i) & (ii)

 4xy = -2x Þ x = 0 or y = ( 1 2 )  

(for x = 0, y = 0)

For y = 1 2  

x2   1 4 + 2 ( 1 2 ) x = 0

x =   4 ± 1 6 + 1 6 2 . 4

( 1 + 2 2 ) o r ( 1 2 2 )  

s u m of   | z | 2 = ( 1 + 2 2 ) 2 + 1 4 + ( 1 2 2 ) 2 + 1 4 + 0 2 + O 2

  3 4 + 2 2 + 1 4 + 3 4 2 2 + 1 4 = 3 2 + 1 2 = 2

Q:  

Let S = { 1 , 2 , 3 , 4 } .  Then the number of elements in the set  is……………….

{ f : S × S : f i s o n t o a n d f ( a , b ) = f ( b , a ) a ( a , b ) S × S }

Read more
A: 

  ( 1 , 1 ) ( 1 , 4 ) ( 4 , 1 ) ( 2 , 4 ) ( 4 , 2 ) ( 3 , 4 ) ( 4 , 3 ) ( 4 , 4 )  all have only one image.

(2, 1) (1, 2), (2, 2) each element has 3 choice.

(3, 2) (2, 3) (3, 1) (1, 3) (3, 3) each element has two choices.

total function = 3 × 3 × 2 × 2 × 2 = 72

Case I

None of the pre image have 3 as image, total functions = 2 × 2 × 1 × 1 × 1 = 4

Case II

None of the pre images have 2 as image then number of function = 25 = 32

Case III

None of the pre image have either 3 or 2 as image

Total function = 15 = 1

Total number of onto function

= 72 – 4 – 32 + 1 = 37

Q:  

The maximum number of compound propositions, out of   p r s , p r s , p q s , p r s , p r s , p q s , q r s , q r s , p q s that can be made simultaneously true by an assignment of the truth values to p, q, r and s, is equal to………….

Read more
A: 

p                          q                          r                           s

 F                           T                           F

 

qna

Maths NCERT Exemplar Solutions Class 12th Chapter Three Exam

Student Forum

chatAnything you would want to ask experts?
Write here...