Maths NCERT Exemplar Solutions Class 12th Chapter Three

Get insights from 162 questions on Maths NCERT Exemplar Solutions Class 12th Chapter Three, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths NCERT Exemplar Solutions Class 12th Chapter Three

Follow Ask Question
162

Questions

0

Discussions

3

Active Users

5

Followers

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

No of one – one functions ® 5P4 = 120

f(a) + 2f(b) – f(c) = f(d)  { 1 , 2 , 3 , 4 , 5 }                   

2f(b) = f(d) + f(c) – f(a)

So, f(d) + f(c) – f(a) should be even.

Only possibilities of        f(d)        f(c)        f(a)       

Not possible since           E            E            E  &

...more

New question posted

2 months ago

0 Follower 4 Views

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

ax + by + cz = d

2a + 3b – 5c = d               2a + 3b – 5c = d …………….(v)

Putting (i) & (iv) in (v) we get a = -9d.

In conditions

( 2 i ^ + j ^ 5 k ^ ) , ( a i ^ + b j ^ + c k ^ ) = 0

2b = d ………….(i) d > 0

2a + b – 5c = 0                  2a + 3b – 5c = d   | a | , | b | , | c | , d g . c . d           

=   α 2

α 2 = 1 α = 2

( 3 i ^ + 5 j ^ 7 k ^ ) . ( a i ^ + b j ^ + c k ^ ) = 0

3a + 5b – 7c = 0) *   4 7 . . . . . . . . . . . . . . . . . . . ( i i i )

a = 1 8 , b = 1

c = -7, d = 2

(iii)…(ii) ® 2a + 3b   3 3 c 7 = 0

2a + 3b =  3 3 7 c c = 7 2 d . . . . . . . . . . . . . . . . . ( i v )

Putting values

a + 7b + c + 20d = 22

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

 

a = | 4 . 2 3 ( 1 ) 2 1 5 |

= | 8 + 3 2 1 5 | = 2

L = 4 a = 8

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

a = α i ^ + 2 j ^ k ^ & b = 2 i ^ + α j ^ + k ^

| a * b | = 1 5 ( a 2 + 4 )

2 | a | 2 + ( a . b ) | b | 2 = ?

a . b = | a | | b | c o s θ

c o s θ = 1 ( a 2 + 5 ) | s i n θ | = ( a 2 + 5 ) 2 1 ( a 2 + 5 )

| a * b | = | a ? | * | b | * | s i n θ |

= ( a 5 + 5 ) * ( a 2 + 5 ) 2 1 ( a 2 + 5 ) = 1 5 ( a 2 + 4 )

( a 2 + 5 ) 2 1 = 1 5 ( a 2 + 4 )

( α = ± 3 )

2 | a | 2 + ( a . b ) | b | 2

= 2 ( a 2 + 5 ) ( a 2 + 5 )

( a 2 + 5 ) = 1 4

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

x 2 a 2 y 2 b 2 = 1

e = 1 + b 2 a 2 e ' = 1 + a 2 b 2

l = 2 b 2 a l ' = 2 a 2 b

( 1 + b 2 a 2 ) = 1 1 1 4 * 2 b 2 a ( 1 + a 2 b 2 ) = 1 1 8 * 2 a 2 b

7 * { ( 7 b 4 ) 2 + b 2 } = 1 1 * b 2 * 7 b 4 a * 7 7 = 6 5

65b2 = 44b3

65 = b * 44

7 7 a + 4 4 b = 6 5 * 2 = 1 3 0

New answer posted

2 months ago

0 Follower 12 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

d y d x + 2 y t a n x = 2 s i n x  

  I . F . = e 2 t a n x d x = s e c 2 x             

 Solution y sec2x =   2 s i n x s e c 2 x d x = 2 s e c x t a n x d x

y sec2 x = 2sec x + c

y = 2 cos x + c cos2x passes ( π 4 , 0 ) = B     C =   2 2

y = 2 cos x  2 2 c o s 2 x 0 π / 2 y d x = 2 π 2                              

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

2 y e x / y 2 d x + ( y 2 4 x e x / y 2 ) d y = 0

  2 e 2 / y 2 ( y d x 2 x d y ) + y 2 d y = 0            

2 e x / y 2 d ( x y 2 ) + d y y = 0

Integrating   2 e x / y 2 + I n y = c

y = 1, n = 0  c = 2

  2 e x / y 2 + I n y = 2  

y = e 2 e x / e 2 + 1 = 2

x = -e2 In2

New answer posted

2 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

  y = 3 ? | x ? 1 2 | = | x + 1 |

Graph

Area =   ( 1 2 * 3 2 * 3 4 ) * 2 + 3 2 * 3 2 = 3 2 * 3 2 * 3 2 = 2 7 8

                                                         

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.