Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

15

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

  A 2 = [ 1 0 0 0 2 0 3 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 2 0 0 0 1 ]

A 3 = [ 1 0 0 0 2 2 0 0 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 3 0 3 0 1 ]        

A 4 [ 1 0 0 0 2 3 0 3 0 1 ] [ 1 0 0 0 2 0 3 0 1 ] = [ 1 0 0 0 2 4 0 0 0 1 ]          

Similarly we get A19 =   = [ 1 0 0 0 2 1 9 0 3 0 1 ] & A 2 0 = [ 1 0 0 0 2 2 0 0 0 0 1 ]

=   [ 1 0 0 0 4 0 0 0 1 ]

1 + α + β = 1 g i v e s α + β = 0 . . . . . . . . ( i )        

  2 2 0 + ( 2 1 9 2 ) α = 4 f r o m ( i )

α = 4 2 2 0 2 1 9 2 = 4 ( 1 2 1 8 ) 2 ( 1 2 1 8 ) = 2          

So, b = 2

Hence b - a = 4

 

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Let the equation of normal is Y – y = - 1 m ( X x )  

where m is slope of tangent to the given curve then

Y y = d x d y ( X x )           

It passes through (a, b) so b – y = d x d y ( a x )  

->(a – x) dx = (y – b) dy

On integration     a x x 2 2 = y 2 2 b y + c . . . . . . . . . ( i )  

(ii) passes through (3, -3) &  ( 4 , 2 2 )  then

3a – 3b – c = 9       .(ii)

& 4a -  2 2 b - c = 12           .(iii)

also given   a 2 2 b = 3 . . . . . . . . . . . . ( i v )

Solve (ii), (iii) & (iv) b = 0, a = 3

Hence a2 + b2 + ab = 9

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

Given l m , n = 0 1 x m 1 ( 1 x ) n 1 d x . . . . . . . . . . . . ( i )  

put 1 - x = t { x = 0 , t = 1 x = 1 , t = 0  

dx = -dt

From (i) l m , n = 1 0 ( 1 t ) m 1 . t n 1 ( d t )  

l m , n = 0 1 t n 1 ( 1 t ) m 1 d t = 0 1 x n 1 ( 1 x ) m 1 d x . . . . . . . . . . ( i i )                              

(i)   l m , n = 0 1 ( 1 + y ) m 1 ( 1 1 1 + y ) n 1 ( d y ( 1 + y ) 2 ) = 0 y n 1 ( 1 + y ) m + n d y . . . . . . . . . . ( i i i )

Similarly by (ii) l m , n = 0 y m 1 ( y + 1 ) m + n d y . . . . . . . . . . ( i v )  

Adding (iii) & (iv) 2 l m , n = 0 y n 1 + y m + 1 ( y + 1 ) m + n  

Putting   1 z { y = 1 , z = 1 y = , z = 0 d y = 1 z 2 d z  

Hence  l m , n = 0 1 x m 1 + x n 1 ( 1 + x ) m + n dx = a lm, n

-> a = 1

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Kindly go throuigh the solution

Given   i = 1 1 8 ( x i α ) = 3 6 i . e i = 1 1 8 x i 1 8 α = 3 6 . . . . . . . . . . ( i )

&       i = 1 1 8 ( x i β ) 2 = 9 0 i . e i = 1 1 8 x i 2 2 β x i + 1 8 β 2 = 9 0 . . . . . . . . . . . . . ( i i )      

(i) & (ii)   i = 1 1 8 x i 2 = 9 0 1 8 β + 3 6 β ( α + 2 ) . . . . . . . . . . . . . ( i i i )

Now variance σ 2 = x i 2 n ( x i n ) 2 = 1 given

->(a - b) (a - b + 4) = 0

Since α β s o | α β | = 4  

 

New answer posted

2 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

Given f ( x ) = 2 x 5 + 5 x 4 + 1 0 x 3 + 1 0 x 2 + 1 0 x + 1 0

f ( 1 ) = 3 > 0 & f ( 2 ) = 3 4 < 0           

So at least one root will lie in (-2, -1)

now f ' ( x ) = 1 0 x 4 + 2 0 x 3 + 3 0 x 2 + 2 0 x + 1 0  

= 1 0 [ x 4 + 2 x 3 + 3 x 2 + 2 x + 1 ]            

= 1 0 x 2 ( x + 1 x + 1 ) 2 > 0 x R           

So, f(x) be purely increasing function so exactly one root of f(x) that will lie in (-2, 1). Hence |a| = 2

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

G i v e n | z + 5 | 4 . . . . . . . . . . ( i )

->Represent a circle ( x + 5 ) 2 + y 2 1 6  

= z ( 1 + i ) + z ¯ ( 1 i ) 1 0 . . . . . . . . . . ( i i )           

->Represent a line X – y 5  

So max |z + 1|2 = AQ2

= ( 4 2 2 ) 2 + 8         

= 3 2 + 1 6 2 = α + β 2        

Hence a + b = 48

 

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Given P n = α n + β n , P n 1 = 1 1 & P n + 1 = 2 9  

P n = α n 2 . α 2 + β n 2 . β 2 . . . . . . . . . ( i )                             

Now quadratic equation having roots a & b will be x2 – (a + b)x + ab = 0

i.e.         x2 – x – 1 = 0,     put x = a and put x = b

So          a2 = a + 1           & b2 = b + 1

(i)  P n = α n 2 ( α + 1 ) + β n 2 ( β + 1 )    

P n = P n 1 + P n 2                        

-> P n 2 = 2 3 4

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

18 = 32 * 2

For G.C.D to be 3. no. of four digits should be only multiple of 3, but not multiple of 9 & also should not be even.

As we know no. of the form                         

9 k -> 1000

9 k + 1 -> 1000

9 k + 2 -> 1000

9 k + 3 -> 1000  -> Total no. = 2000

9 k + 4 -> 1000

9 k + 5 -> 1000

9 k + 6 ->1000

9 k + 7 -> 1000

9 k + 8 -> 1000

In which half will be even & half be odd so Required no. = 1000

 

New answer posted

2 months ago

0 Follower 6 Views

A
alok kumar singh

Contributor-Level 10

Given sequence is -16, 8, -4, 2, .

are in G.P. with first term a = -16 & common ratio r =   1 2

Now t p = a r P 1 = 1 6 ( 1 2 ) p 1 & t q = a r q 1 = 1 6 ( 1 2 ) q 1  

So A.M. = -8 [ ( 1 2 ) p 1 + ( 1 2 ) q 1 ] = α ( l e t )

Given equation is 4x2 – 9x + 5 = 0 gives x = 1 , 5 4  

From roots we get possible value of b = 1 so

1 6 ( 1 2 ) P + q 2 2 = 1 O R ( 1 2 ) p + q 2 2 = 1 1 6 ( 1 2 ) 4

p + q 2 2 = 4 p + q = 1 0       

          

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Given curves x 2 9 + y 4 4 = 1 . . . . . . . . . ( i )  

&       x 2 + y 2 = 3 1 4 . . . . . . . . . . . ( i i )   

Equation of any tangent to (i) be y = mx +    9 m 2 + 4 . . . . . . . . . . . . ( i i i )

For common tangent (iii) also should be tangent to (ii) so by condition of common tangency

9 m 2 + 4 = 3 1 4 ( 1 + m 2 )          

OR 36m2 + 16 = 31 + 31m2

->m2 = 3

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.