Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

x 2 a 2 y 2 b 2 = 1

e = 1 + b 2 a 2 e ' = 1 + a 2 b 2

l = 2 b 2 a l ' = 2 a 2 b

( 1 + b 2 a 2 ) = 1 1 1 4 * 2 b 2 a ( 1 + a 2 b 2 ) = 1 1 8 * 2 a 2 b

7 * { ( 7 b 4 ) 2 + b 2 } = 1 1 * b 2 * 7 b 4 a * 7 7 = 6 5

65b2 = 44b3

65 = b * 44

7 7 a + 4 4 b = 6 5 * 2 = 1 3 0

New answer posted

4 months ago

0 Follower 16 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

d y d x + 2 y t a n x = 2 s i n x  

  I . F . = e 2 t a n x d x = s e c 2 x             

 Solution y sec2x =   2 s i n x s e c 2 x d x = 2 s e c x t a n x d x

y sec2 x = 2sec x + c

y = 2 cos x + c cos2x passes ( π 4 , 0 ) = B     C =   2 2

y = 2 cos x  2 2 c o s 2 x 0 π / 2 y d x = 2 π 2                              

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

2 y e x / y 2 d x + ( y 2 4 x e x / y 2 ) d y = 0

  2 e 2 / y 2 ( y d x 2 x d y ) + y 2 d y = 0            

2 e x / y 2 d ( x y 2 ) + d y y = 0

Integrating   2 e x / y 2 + I n y = c

y = 1, n = 0  c = 2

  2 e x / y 2 + I n y = 2  

y = e 2 e x / e 2 + 1 = 2

x = -e2 In2

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

  y = 3 ? | x ? 1 2 | = | x + 1 |

Graph

Area =   ( 1 2 * 3 2 * 3 4 ) * 2 + 3 2 * 3 2 = 3 2 * 3 2 * 3 2 = 2 7 8

                                                         

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

  f ( x ) + f ( x + k ) = n x R , & k > 0 . . . . . . . . . . . . ( i )

Replace x by x + k.          

f ( x + k ) + f ( x + 2 k ) = n . . . . . . . . . . . . . . . ( i i )

From (i) & (ii), f(x + 2k) = f(x).

f ( x )  is periodic with period = 2k.

I 1 = 0 4 n k f ( x ) d x = 2 x 0 2 k f ( x ) d x . . . . . . . . . . . . . . . . . . . ( i i )

I 2 = k 3 k f ( x ) d x put x = t + k

= 2 k 2 k t ( t + k ) d t = 2 0 2 k f ( t + k ) d t

= 2 n 0 2 k n d x = 4 n 2 k .

               

               

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  f ( r 4 ) = 2 , f ( r 2 ) = 0 & f ' ( r 2 ) = 1

g(x)   ( f ' ( t ) s e c t + t a n t s e c t f ( t ) ) d t

= [ f ( t ) s e c t ] x π / 4

=   2 * 2 f ( x ) s e c x

= 2 c o s x f ( x ) c o s x

=   2 s i n x + 1 s i n x = 3

New answer posted

4 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

f ( x ) = { [ x ] , x < 0 | 1 x | , x 0 g ( x ) = { c x x , x < 0 ( x 1 ) 2 1 , x 0

fog

f o g ( [ e x x ] , ( e x x < 0 ) ( x < 0 ) [ ( x 1 ) 2 1 ] ( x 1 ) 2 1 < 0 x 0 | 1 e x + x | , e x x 0 x < 0 | 1 ( x + 1 ) 2 + 1 | , ( x 1 ) 2 1 0 x 0 , x ( 2 , ) (

 Not possible as of inequalities give ? .  

ex – x < 0, x < 0                 (x 1)2 – 1 < 0

Not possible                     (x – 1 + 1)(x – 1 – 1) < 0

(x)(x – 2) < 0

x   ( 0 , 2 )

continuous  x < 0

f o g { | 1 e x + x | , x < 0 | 1 ( x 1 ) 2 + 1 | , x = 0 | 1 ( x 1 ) 2 + 1 | , x 2 Discontinuous at 0

continuous   x

   fog is discontinuous at 0

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  a + a1……an, 100               n arithmetic mean 100

a + n = 33 ……. (i)

( a 1 a n = 1 7 )

( a + d ) ( 1 0 0 d ) = 7 7

7a + 8d = 100…………… (ii)

a + (n + 1)d = 100………………. (iiI)

Solving these equations (i), (ii) & (iii), we get

n = 23 & d =    1 5 4

a = 10

New answer posted

4 months ago

0 Follower 13 Views

A
alok kumar singh

Contributor-Level 10

  ( 1 x 2 + 3 x 3 ) ( 5 2 x 3 1 5 x 2 ) 1 1 , x 0

(r + 1)th term for expansion of   ( 5 2 x 3 1 5 x 2 ) 1 1

  n – r = x3

r = y   0 x , y 1 1 s h o u l d b e n a t u r a l n u m b e r .

11Cy   * ( 5 2 ) x * ( 1 5 ) y * x ( 3 x 2 y )

for term to be independent of x, power of x should be zero.

(3x – 2y) = 0 (when 1 is multiplied).

3x + 3y = 33

y = 3 3 5 ( N o s o l u t i o n )  

3x – 2y + 2 = 0 where (-x2) is multiplied).

3x +  3y = 33

y = 7, x = 4

3 x 2 y + 3 = 0 3 x + 3 y = 3 3 }

  coefficient of term independent of x.

( 1 ) * 1 1 ? C 7 * ( 5 2 ) 4 * ( 1 5 ) 7

= 3 3 2 0 0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.