Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

6 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

(xy)(dx+dy)=dxdy(xy+1)dy=(1x+y)dxdydx=1x+yxy+1dydx=1(xy)1+(xy)..........(1)Let,xy=tddx(xy)=dtdx1dydx=dtdx1dtdx=dydx

Substituting the values of xy and dydx in equation (1), we get:

1dtdx=1t1+tdtdx=1(1t1+t)dtdx=(1+t)(1t)1+tdtdx=2t1+t

(1+ttdt)=2dx(1+1t)dt=2dx..........(2)

Integrating both sides, we get:

t+log|t|=2x+C(xy)+log|xy|=2x+Clog|xy|=x+y+C..........(3)

Now,y=1,at,x=0

Therefore, equation (3) becomes:

log1=01+C

C=1

Substituting C=1 in equation (3), we get:

og|xy|=x+y+1

This is the required particular solution of the given differential equation .

New answer posted

6 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

yexydx=(xexy+y2)dyyexydxdy=xexy+y2exy[y.dxdyx]=y2exy.[y.dxdyx]y2=1..........(1)

Let,exy=z

Differentiating it with respect to y, we get:

(exy)=dzdyexy.ddy(xy)=dzdyexy.[y.dxdyxy2]=dzdy..........(2)

From equation (1) and equation (2), we get:

dzdy=1dz=dy

Integration both sides, we get:

z=y+Cexyy+C

New answer posted

6 months ago

0 Follower 14 Views

V
Vishal Baghel

Contributor-Level 10

(1+e2x)dy+(1+y2)exdx=0dy1+y2+exdx1+e2x=0

Integrating both sides, we get:

tan1y+exdx1+e2x=C..........(1)Let,ex=te2x=t2ddx(ex)=dtdxex=dtdxexdx=dt

Substituting these values in equation (1), we get:

tan1y+dt1+t2=Ctan1y+tan1t=Ctan1y+tan1(ex)=C..........(2)Now,y=1,at,x=0

Therefore, equation (2) becomes:

tan11+tan11=Cπ4+π4=CC=π2

Substituting C=π2 in equation (2), we get:

tan1y+tan1(ex)=π2

This is the required solution of the given differential equation.

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The differential equation of the given curve is:

sinxcosydx+cosxsinydy=0sinxcosydx+cosxsinydycosxcosy=0tanxdx+tanydy=0

Integrating both sides, we get:

log(secx)+log(secy)=logClog(secx.secy)=logCsecx.secy=C..........(1)

The curve passes through point (0,π4)

1*√2=CC=√2

On subtracting C=√2 in equation (10, we get:

secx.secy=√2secx.1cosy=√2cosy=secx/√2

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given: Differential equation dydx+y2+y+1x2+x+1=0

dydx+y2+y+1x2+x+1=0dydx= (y2+y+1)x2+x+1dyy2+y+1=dxx2+x+1dyy2+y+1+dxx2+x+1=0

Integrating both sides,

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

 

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The equation of a circle in the first quadrant with centre (a, a) and radius (a) which touches the coordinate axes is:

(xa)2+(ya)2=a2..........(1)

Differentiating equation (1) with respect to x, we get:

2(xa)+2(ya)dydx=0(xa)+(ya)y'=0xa+yy'ay'=0x+yy'a(1+y')=0a=x+yy'1+y'

Substituting the value of a in equation (1), we get:

[x(x+yy'1+y')]2+[y(x+yy'1+y')]2=(x+yy'1+y')2[(xa)y'(1+y')]2+[yx1+y']2=[x+yy'1+y']2(xy)2.y'2+(xy)2=(x+yy')2(xy)2[1+(y')2]=(x+yy')2

Hence, the required differential equation of the family of circles is (xy)2[1+(y')2]=(x+yy')2

New answer posted

6 months ago

0 Follower 15 Views

V
Vishal Baghel

Contributor-Level 10

dydx=x33xy2y33x2y..........(1)

This is a homogenous equation. To simplify it, we need to make the substitution as:

y=vxddx(y)=ddx(vx)dydx=v+xdvdx

Substituting the values of y and dvdx in equation (1), we get:

v+xdvdx=x33x(vx)2(vx)33x2(vx)v+xdvdx=13v2v33vxdvdx=13v2v33vvxdvdx=13v2v(v33v)v33vxdvdx=1v4v33v(v33v1v4)dv=dxx

Integrating both sides, we get:

(v33v1v4)dv=logx+logC'.........(2)Now,(v33v1v4)dv=v3dv1v43vdv1v4(v33v1v4)dv=I13I2,Where,I1=v3dv1v4andI2=vdv1v4...........(3)

Let,1v4=t.ddv(1v4)=dtdv4v3=dtdvv3dv=dt4Now,I1=dt4=logt=14log(1v4)

And,I2=vdv1v4=vdv1(v2)2Let,v2=p.ddv(v2)=dpdv2v=dpdvvdv=p2I2=12dp1p2=12*2log|1+p1p|=14log|1+v21v2|

Substituting the values of I1 and I2 in equation (3), we get:

(v33v1v4)dv=14log(1v4)34log|1+v21v2|

Therefore, equation (2) becomes:

14log(1v4)34log|1+v21v2|=logx+logC'14log[(1v4)(1+v21v2)]=logC'x(1+v2)4(1v2)2=(C'x)4(1+y2x2)4(1y2x2)2=1C'4x4(x2+y2)4x4(x2y2)2=1C'4x4(x2y2)2=C'4(x2+y2)4(x2y2)=C'2(x2+y2)2x2y2=C(x2+y2)2,whereC=C'2

Hence, the given result is proved.

New answer posted

6 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Equation of the given family of curves is  (xa)2+2y2=a2

(xa)2+2y2=a2x2+a22ax+2y2=a22y2=2axx2..........(1)

Differentiating with respect to x, we get:

2ydydx=2a2x2dydx=ax2ydydx=2a2x24xy..........(2)

From equation (*1), we get:

2ax=2y2+x2

On substituting this value in equation (3), we get:

dydx=2y2+x22x24xydydx=2y2x24xy

Hence, the differential equation of the family of curves is given as dydx=2y2x24xy

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.