Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

dydx+(secx)y=tanx Which is in the form dydx+Py=Q

So, P=secx&Q=tanx

 I.F=ePdx=esecxdx=elog|secx+tanx|=secx+tanx

Thus, the general solution is ,

y*I.F=Q*I.Fdx+c=y*(secx+tanx)=tanx(secx+tanx)dx+c

=(tanxsecx+tan2x)dx+c=(tanxsecx+sec21)dx+c=sec+tanxx+c

=(secx+tanx)y=secx+tanxx+c{?sec2x=tan2x+1}

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+yx=x2 Which is in the form dydx+Py=Q

So,  P=1x=&Q=x2

I.F=ePdx=e12dx=elogx=x {? elogx=x}

Thus, the general solution is

y*I.F=Q*I.Fdx+cy.x=x2.xdx+c=xy=x3dx+c=xy=x44+c

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

135. Given, f(x)=|x|3={x3 if x0x3 if x<0

For x0,f(x)=|x|3=x3

and f(x)=3x2f(x)=6x

For x<0,f(x)=|x|3=(x)3=x3.

so, f(x)=3x2f(x)=6x

Hence, f(x)={6x, if x06x, if x<0

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, D.E. is

dydx+3y=e2x which is of the form

dydx+Py=Q

Where P=3&Q=e2x

So, I.F =ePdx=e3dx=e3x

So, the solution is =y*I.F=e2x(I.F).dx+c

=y*e3x=e2x.e3xdx+c=e3xy=exdx+c=e3xy=ex+c=y=exe3x+ce3x=y=e2x+ce3x

Is the required general solution.

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+2y=2sinx which is of form dydx+Px=Q

We have, P = 2

Q=sinx

So, I.F. =ePdx=e2dx=e2x

The solution is y*I.F=Q*(I.F)dx+c

ye2x=sinxe2xdx+c=ye2x=I+c(1)Where,I=sinxe2x=sinxe2x(ddxsinxe2xdx)dx=sinxe2x212[cosxe2xdx]=e2xsinx212[cose2xdx(ddxcosxe2xdx)dx]=e2xsinx212[cosxe2x212(cosx)e2xdx]=e2xsinx2e2xcosx414sinxe2xdx

=I=e2xsinx2e2xcosx4141=I+14I=2e2xsinxe2xcosx4=54I=e2x(2sinxcosx)4=I=e2x(2sinxcosx)5

Hence, equation, (1) becomes,

ye2x=e2x5(2sinxcosx)+c=y=(2sinxcosx)5+ce2x

Is the required solution.

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

134. Given, x=a(cost+tsint) and y=a(sinttcost).

Differentiating w r t. 't' we get,

dxdt=addt(cost+tsint). 

=a(sint+tddtsint+sintdtdt). 

=a(sint+tcost+sint)=atcost

dydt=addt(csinttcost)

=a(costtddtcostcotdtdt)

=a(cost+tsintcost)=atsint

dydx=dy/dtdx/at=atsintatcost=tant

So,   d2ydx2=ddx(tant)=ddt(tant)dtdx. 

=sec2t*dtdx.

=sec2t*1(dx/dt)

=sec2t*1 at cost

=sec3tat

New answer posted

6 months ago

0 Follower 170 Views

P
Payal Gupta

Contributor-Level 10

15. [3x22ax+3a2]3

[3x2+a(2x+3a)]3

We know that by binomial theorem,

(a+b)3 = a3+b3+3ab(a+b)

a3+b3+3a2b+3ab2

Then,

[3x2+a(2x+3a)]3

= (3x2)3 + [a(2x+3a)]3 + [3(3x2)2 a(2x+3a)] + [ 3(3x2){a(2x+3a)}2]

= 27x6 + [a3(2x+3a)3] + [3(9x4)(2ax+3a2)] + [3(3x2){a2(3a2x)2}]

= 27x6 + [a3{8x3+27a3+3(4x2)(3a)+3(2x)(9a2)}] + [54ax5+81a2x4] + [ (9a2x2) (9a2+4x212ax) ]

= 27x6 + [ 8a3x3+27a6+36a4x254a5x ] + [ 54ax5+81a2x4 ] + [ (81a4x2+36a2x4108a3x3 ]

= 27x6  8a3x3+27a6+36a4x254a5x  54ax5+81a2x4 + 81a4x2+36a2x4108a3x3

= 27x6– 54ax5 + 117a2x4  116a3x3 + 117a4x2  54a5x + 27a6

New answer posted

6 months ago

0 Follower 18 Views

P
Payal Gupta

Contributor-Level 10

14. For (a – b) to be a factor of anb nwe need to show (anbn) = (ab)k as k is a natural number.

We have, for positive n

an = (ab+b)n = [(ab)+b]n

=>an = nC0(ab)n + nC1(ab)n -1b + nC2(ab)n – 2b2 + ………… +nCn-1 (ab) bn1 + nCnbn

=>an= (ab)n + nC1 (ab)n1 b + nC2 (ab)n2 b2 + …………….…+ nCn-1 (ab) bn1 + bn [Since, nC0 = 1 and nCn = 1]

=> anbn = (ab)n +nC1 (ab)n1 b + nC2 (ab)n2 b2 + ……………… + nCn-1 (ab) bn1

=> anbn = (ab) [ (ab)n1 + nC1(ab)n2 b + nC2 (ab)n3 b2 +……….…… + nCn-1  bn1 ]

=> anbn = (ab) k where k = [ (ab)n1 + nC1 (ab)n2 b + nC2 (ab)n3 b2 +……….…… + nCn-1  bn1 ] is a natural number.

Therefore (a – b) is a factor o

...more

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

13. The general term of the expansion (3+ax)9 is

Tr+1 = 9Cr 3(9r) (ax)r

= 9Cr 3(9r)arxr

At r = 2,

T2+1 = 9C2 3(92)a2x2

9!2!(92)! 37a2x2

9′8′7! /2′1′7! 37a2x2

= 36 *37a2x2

At r = 3,

T3+1 = 9C3 3(93)a3x3

9!3!(93)! 36a3x3

= 9'8'7'6!/3'2'1'6! 36a3x3

= 84 *36a3x3

Given that,

Co-efficient of x2 = co-efficient of x3

=> 36 * 37a2 = 84 * 36a3

=> a3a2 = 36' 3/84'36

=> a = 3′3/7

97

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

133.  Given, cosy=xcos(a+y).

x=cosycos(a+y)

Differentiating w r t 'y' we get,

dxdy=ddy(cosycos(a+y)).

=cos(a+y)ddycosycosyddycos(a+y)cos2(a+y).

=cos(a+y)(siny)cosy(sin(a+y))cos2(a+y).

=cos(a+y)siny+sin(a+y)cosycos2(a+y)

=sin(a+y)cosycos(a+y)siny.cos2(a+y)

dxdy=sin(a+yy)cos2(a+y){?sin(AB)=sinAcosBcosAsinB}

So, dydx=cos2(a+y)sina

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.