Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

ydx+(xy2)dy=0=ydxdy+xy2=0=dxdy+xyy=0

=dxdy+1y.x=y Which is of form.

dxdy+Px=Q

So, P=1y&Q=y

I.F=ePdy=e1ydy=elogy=y

Thus the general solution is of form, x*(I.F)=Q*(I.F)dy+c

x.y=y.ydy+c=xy=y2dy+c=xy=y33+c=x=y23+cy

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

(x+y)dydx=1=x+y=dxdy

=dxdyx=y Which is of form =dxdy+Px=Q

So,  P=1&Q=y

I.F=ePdy=e1dy=ey

Thus the general solution is of the form,  x* (I.F)=Q (I.F)dy+c

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

=dydx+y(1+xcotx)x=1 Which is of form dydx+Py=Q

So, P=(1+xcotx)x&Q=1

Pdx=(1x+xcotxx)dx=log|x|+log|sinx|=log|xsinx|

I.F=ePdxelog|xsinx|xsinx

Thus the solution is of the form.

y*xsinx=1.xsinxdx+c=xsinxddxsinxdxdx+c=2cosx+cosxdx+c=y*xsinx=xcosx+sinx+c=y=xcosxsinx+sinxxsinx+cxsinx=y=cotx+1x+cxsinx

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1+x)2dy+2xydx=cotxdx=(1+x)2dydx+2xy=cotx

=dydx+2x1+x2*y=cotx1+x2 Which is of form dydx+Py=Q

So , P=2x1+x2&Q=cotx1+x2

I.F=ePdx=e2x1+x2dx=elog|1+x2|=1+x2

Thus the solution is of the form,

y(1+x2)=cotx1+x2*(1+x2)dx+cy(1+x2)=cotxdx+c

=log|sinx|+c

y=log|sinx|1+x2+c1+x2=(1+x2)1log|sinx|+(1+x2)1c

New answer posted

6 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

139. Kindly go through the solution

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

xlogxdydx+y=2xlogx

=dydx+yxlogx=2x2 Which is of form dydx+Py=Q

So, P=1xlogx&Q=2x2

I.F=ePdx=e1xlogxdx=e1xlogxdx=elog|logx|=logx

Thus, the general solution is of the form

y*logx=2x2*logxdx+cy.logx=2[logx1x2dxddxlogx1x2dx.dx]+c=2[logx*(x11)1x(x11)dx]+c=2[logxx+x2dx]+c=2[logxx(x11)]+c

=ylogx=2x[logx+1+c]

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

xdydx+2y=x2logx

dydx+2x.y=xlogx which is of form dydx+Py=Q

So, P=2x&Q=xlogx

I.F=ePdx=e2xdx=e2logx=elogx2=x2

Thus, the general solution is of the form.

y*x2=xlogx.x2dx+c

=logxx3dx+c

=logxx3dxddxlogxx3dxdx+c=logx.x4414*x44dx+c

=yx2=x44logxx416+c=y=x24logxx216+cx2

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

137. Yes, Let us take f(x)=|x1|+|x2|.

So, x = 1, x= 2 divides the real line into three disjoint intervals (,1],[1,2] and [2,).

For x(,1].

f(x)=(x1)+[(x2)]=x+1x+2=32x.

For x[1,2]. 

f(x)=(x1)(x2)=1.

For x[2,)

f(x)=x1+x2=2x3.

Hence, these polynomial fun are all continous and desirable. for all real values of x or, except x = 1 and x = 2.

ie, xR{1,2}.

For differentiavity at x = 1,

LHD = =limx1f(x)f(1)x1=limx132x1x1=limx122xx1.

=limx12(x1)x1

=limx12

= -2

RHD = =limx1+f(x)f(1)x1=limx1+11x1=limx1+0x1=0.

as L.HD ≠ R.HD

f is not differentiable at x =1.

For continuity at x = 1.

L.HL= =limx1f(x)=limx1=1.

RHL = limx1+f(x)=limx1+1=1 \ LHL = RHS

f is continuous at x = 1

For continuity & differentiability at x = 2

=limx2f(x)=limx21=1.

  =limx2+f(x)=limx2+(2x3)=43=1.

? LHL = RHL

f is continuous at x = 2

=limx2f(x)f(2)x2=limx211x2=limx2=0x2

  =limx2+f(x)f(2)x2=limx2+2x31x2

=limx2+2(x2)x2

=limx2+2

= 2

? LHD ≠ RHD

f is not differentiable at x = 2.

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

cos2xdydx+y=tanx=dydx+1cos2xy=tanxcos2x

=dydx+sec2xy=sec2xtanx Which is of form dydx+Py=Q

So, P=sec2x&Q=sec2xtanx

I.F=ePdx=esec2dx=etanx

Thus, the general solution is of the form.

y.etanx=sec2xtanx.etanxdx+c

Let, tanx=t=sec2xdx=dt

=yet=t.etdt+c=tetdtddttetdt.dt+c=tetetdt+c=tetet+c=et(t1)+c

yetanx=etanx(tanx1)+cy=(tanx1)+cetanx

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

136. Given, sin(A+B)=sinAcosB+cosAsinB

Differentiating w r t. 'x' we get,

ddxsin(A+B)=ddx(sinAcosB+cosAsinB)

cos(A+B)ddx(A+B)=sinAddxcosB+cosBddxsinA+cosAddxsinB+sinBddxcosA

cos(A+B)(dAdx+dBdx)=sinAsinBdBdx+cosBcosAdAdx+cosAcosBdBdxsinAsinBdAdx

cos(A+B)(dAdx+dBdt)=cosAcosB(dAdx+dBdx)sinAsinB(dAdx+dBdx)

=(cosAcosBsinAsinB)(dAdx+dBdx).

cos(A+B)=cosAcosBsinAsinB.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.