Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

132. Given, (xa)2+(yb)2=c2.

Differentiating w r t 'x' we get

ddx(xa)2+ddx(yb)2=ddxc2

2(xa)+2(yb)dydx=0

dydx=2(xa)2(yb)=(xa)(yb)

Again, d2ydx2={(yb)ddx(xa)(xa)ddx(yb)(yb)2}

={(yb)(xa)dydx(yb)2}

={(yb)+(xa)(xa)(yb)(yb)2}

={(yb)2+(xa)2(yb)3}

=c2(yb)3{?(xa)2+(yb)2=c2}

Then, L.H.S = {1+(dydx)2}3/2d2ydx2={1+(xa)2(yb)2}3/2c2(yb)2

={(yb)2+(xa)2}3/2(yb)3*(yb)3c2

=c2*3/2c2=c3c2=c Where c is a constant and is independent of a and b.

New answer posted

6 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

131. Kindly go through the solution

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

1.The general term of the expansion (a + b)n is given by

Tr +1 = nCran–rbr

So, T1 = nC0an = an

T2 = nC1an-1b = n!1!(n1)! an-1 b = n*(n1)!(n1)! an-1b = nan-1b

T3 = nC2an-2b2 = n!2!(n2)[! an-2b2 = n *(n1)*(n2)!2*1*(n2)! an-2b2 = n(n1)2 an-2b2

Given,

T1 = 729

=>an = 729 ------------------ (1)

T2 = 7290

=>nan–1b = 7290 ------------- (2)

T3 = 30375

=> n(n1)2 an–2b2 = 30375 ------------------- (3)

Dividing equation (2) by (1) we get,

nan1ban = 7290729

=> nba = 10

Similarly dividing equation (3) by (2) we get,

n(n1)2 an–2b2 ÷ nan–1b = 303757290

=> n(n1)2 an–2b21nan1b = 303757290

=> n(n1)an2b2 * 1nan1b = 303757290 * 2

=> (n1)ba = 25′ *26

=> nba ba = 253

=> 10 – ba = 253 [since, nba&

...more

New answer posted

6 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

130. Kindly go through the solution

 

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

11. The general term of the expansion  (1+x)m is given by,

Tr+1 = mCr 1mr xr

= mCrxr

At r = 2,

T2+1 = mC2x2

Given that, co-efficient of x2 = 6

=>mC2 = 6

=> m!2! (m2)! = 6

=>m2 – m = 12

=>m2 – m – 12 = 0

=>m2 + 3m – 4m – 12 = 0

=>m (m + 3) – 4 (m+ 3) = 0

=> (m – 4) (m + 3) = 0

=>m = 4 and m = –3

Since, we need a positive value of m we have,  m = 4

New answer posted

6 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

129. Given, y=12(1cost). x=10(tsint). 

Differentiating w r t 't' we get,

dydt=12ddt(1cost)=12(0(sint))=12sint.

dxdt=10ddt(tsint)=10(1cost).

dydx=dy/dtdx/dt

=12sint10(1cost)=12sint10[1cost]

=12*2sint/tcost/210*2sin2t/2

{?sin2θ=2sinθcosθcos2θ=12sin2θ} =65cost/2sint/2=65cott/2

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

128. Let y=xx23+(x3)x2.

Putting u=xx23  v=(x3)x2 we get,

y=u+v

dydx=dudx+dvdx ________(1)

Now, u=xx23

Taking log,

logu=(x23)logx.

1ududx=(x23)ddxlogx+logxddx(x23)

dudx=u[x23x+logx(2x)]

dudx=xx23[x23x+2xlogx]

And v=(x3)x2

logv=x2log(x3)

1vdvdx=x2ddxlog(x3)+log(x3)ddxx2

=x2*1*x3ddx(x3)+log(x3)2x

dvdx=v[x2x3+2xlog(x3)]

=(x3)x2[x2x3+2xlog(x3)]

Hence eqn (1) becomes

dydx=x(x23)[x23x+2xlogx]+(x3)x2[x2x3+2xlog(x3)]

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

127. Let y=xx+xa+ax+aa.

So, dydx=dxxdx+dxadx+daxdx+daadx.

dydx=dydx+axa1+axloga+0. _________(1)

Where u=xx

logu=xlogx (Taking log)

1ydydx=xddxlogx+logxdxdx (Differentiation w r t 'x')

1ydydx=xx+logx

dydx=u[1+logx]

=xx[1+logx]

Hence eqn (1) becomes,

dydx=xx[1+logx]+axa1+axloga.

New answer posted

6 months ago

0 Follower 11 Views

P
Payal Gupta

Contributor-Level 10

10. General term of the expansion (1 + x)2n is

Tr+1 = 2nCr (1)2n-r(x)r

So, co-efficient of xn (i.e. r = n) is 2nCn

Similarly general term of the expansion (1 + x)2n–1 is

Tr+1 = 2n-1Cr (1)2n–1–rxr

And co-efficient of xn i.e. when r = n is 2n-1Cn

Therefore,

coefficient of xn in (1+x)2ncoefficient of xn in (1+x)2n1

=

2n!n!(2nn)! ÷ (2n1)!n!(2n1n)!

2n!n!n! * n!(n1)!(2n1)!


2nn

= 2

Thus, co-efficient of xn in (1+x)2n = 2x co-efficient of xn in (1+x)2n1

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

126. Let y=(sinxcosx)sinxcosx

Taking log,

logy=(sinxcosx)log(sinxcosx)

Differentiating w r t 'x' we get,

1ydydx=(sinxcosx)dlogdx(sinxcosx)+log(sinxcosx)ddx(sinxcosx).

=(sinxcosx)*1(sinxcosx)*(cosx+sinx)+log(sinxcosx)(cosx+sinx)

=(cosx+sinx)[1+log(sinxcosx)]

dydx=y(cosx+sinx)[1+log(sinxcosx)]

dydx=(sinxcosx)sinxcosx*(cosx+sinx)[1+log(sinxcosx)]

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.