Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 10 Views

V
Vishal Baghel

Contributor-Level 10

It is given that  l1, m1, n1 and l2, m2, n2  are the direction cosines of two mutually perpendicular lines. Therefore,

l1l2+m1m2+n1 n2=0..........(1)l12+m12+n1 2=1..........(2)l22+m22+n2 2=1..........(3)

Let  l, m, n  be the direction cosines of the line which is perpendicular to the line with direction cosines  l1, m1, n1 and l2, m2, n2.

ll1+ mm1+ nn1 =0l l2+m m2+n n2=0lm1n2m2n1=mn1l2n2l1=nl1m2l2m1l2(m1n2m2n1)2=m2(n1l2n2l1)2=n2(l1m2l2m1)2l2(m1n2m2n1)2=m2(n1l2n2l1)2=n2(l1m2l2m2)2=l2+m2+n2(m1n2m2n1)2+(n1l2n2l1)2+(l1m2l2m2)2..........(4)

l, m, n  are the direction cosines of the line.

l2 + m2 + n2 =1(5)

It is known that,

(l12+m12+n1 2)(l22+m22+n2 2)(l1l2+m1m2+n1 n2)2=(m1n2m2n1)2+(n1l2n2l1)2+(l1m2l2m1)2From,(1),(2)&(3),we.obtain1.10=(m1n2m2n1)2+(n1l2n2l1)2+(l1m2l2m1)2(m1n2m2n1)2+(n1l2n2l1)2+(l1m2l2m1)2=1..........(6)

Substituting the values from equations (5) and (6) in equation (4), we obtain

l2(m1n2m2n1)2=m2(n1l2n2l1)2=n2(l1m2l2m1)2=1

Thus, the direction cosines of the required line are  m1n2m2n1,n1l2n2l1,l1m2l2m1

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let OA be the line joining the origin,  O (0, 0, 0),  and the point,  A (2, 1, 1).

Also, let BC be the line joining the points,  B (3, 5, 1)andC (4, 3, 1).

The direction ratios of OAare2, 1, and1andofBCare (43)=1, (35)=2, and (1+1)=0

OA is perpendicular to BC, if a1a2 + b1b2 + c1c2 =0

 a1a2 + b1b2 + c1c2 =2*1+1 (2)+1*0=22=0

Thus, OA is perpendicular to BC.

New answer posted

6 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

27. L.H.SL.HS=sin (x+1)xsin (x+2)x+cos (x+1)xcos (x+2)x.

= c o s ( x + 1 ) x c o s ( x + 2 ) x + s i n ( x + 1 ) x s i n ( x + 2 ) x .

Let A = (n+1)x and B = (n+2)x

So, L.H.S = cosAcosB + sin Asin B

= c o s ( A B )

Putting values of A and B we get,

L.H.S = L.H.S = cos [ (n+1)x (n+2)x]

= c o s [ n x + x n x 2 x ]

= c o s ( x )

=cosx= R.H.S R.H.S

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The direction ratios of normal to the plane, L1:a1x+b1y+c1z=0. , are  a1, b1, c1  and  L2:a2x+b2y+c2z=0.

L1
L2,ifa1a2=b1b2=c1c2L1L2,ifa1a2+b1b2+c1c2=0

The angle between L1&L2 is given by,

(b) The equations of the planes are 2x+y+3z2=0andx2y+5=0

  a1=2,b1=1,c1=3&a2 =, b2 =2, c2 =a1a2+b1b2+c1c2=2*1+1*(2)+3*0=0

Thus, the given planes are perpendicular to each other.

(c) The equations of the given planes are 2x2y+4z+5=0and3x3y+6z1

Here,  a1=2,b1=2,c1=4&a2 =, b2 =3, c2 =6

a1a2+b1b2+c1c2=2*3+1*(2)(3)+4*6=6+6+24=360

Thus, the given planes are not perpendicular to each other.

a1a2=23,b1b2=23=23&c1c2=46=23a1a2=b1b2=c1c2

Thus, the given planes are parallel to each other

(d) The equations of the planes are and 2xy+3z1=0and2xy+3z+3=0

a1=2,b1=1,c1=3&a2 =, b2 =1, c2 =3a1a2=22=1,b1b2=11=1&c1c2=33=1a1a2=b1b2=c1c2

Thus, the given lines are parallel to each other

(e) The equations of the given planes are  4x+8y+z8=0andy+z4=0 a1=4,b1=8,c1=1&a2 =, b2 =1, c2 =1a1a2+b1b2+c1c2=4*0+8*1+1=90

Therefore, the given lines are not perpendicular to each

...more

New answer posted

6 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

The equations of the given planes are  r.(2i^+2j^3k^)=5&r.(3i^3j^+5k^)=3

It is known that if n1 and n2 are normal to the planes,  r.n1=d1&r.n2=d2  then the angle between them, Q, is given by,

cosQ=|n1.n2|n1||n2||..........(1)

H e r e , n 1 = 2 i ^ + 2 j ^ 3 k ^ & n 2 = 3 i ^ 3 j ^ + 5 k ^ n 1 . n 2 = ( 2 i ^ + 2 j ^ 3 k ^ ) ( 3 i ^ 3 j ^ + 5 k ^ ) = 2 . 3 + 2 . ( 3 ) + ( 3 ) . 5 = 1 5 | n 1 | = = | n 2 | = =

Substituting the value of n1.n2 |n1|&|n2| in equation (1), we obtain

cosQ=|15.|cosQ=15cosQ1=(15)

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The equation of the plane through the intersection of the planes, x+y+z=1and2x+3y+4z=5 , is

  (x+y+z1) +λ(2x+3y+4z5)

(2λ+1)x+(3λ+1)y+(4λ+1)z(5λ+1)=0 ..........(1)

The direction ratios,  a1, b1, c1, of this plane are (2λ+1),(3λ+1),and(4λ+1).

The plane in equation (1) is perpendicular to xy+z=0

Its direction ratios,  a2, b2, c2, are 1,1,and1 .

Since the planes are perpendicular,

a1a2+b1b2+c1c2=0(2λ+1)(3λ+1)+(4λ+1)=03λ+1=0λ=13

Substituting λ=13 in equation (1), we obtain

13x13z+23=0xz+2=0

This is the required equation of the plane.

New answer posted

6 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

The equations of the planes are  r.(2i^+2j^2k^)=7,r.(2i^+5j^+3k^)=9

r.(2i^+2j^2k^)7=0..........(1)r.(2i^+5j^+3k^)9=0..........(2)

The equation of any plane through the intersection of the planes given in equations (1) and (2) is given by,

[r.(2i^+2j^2k^)7]+λ[r.(2i^+5j^+3k^)9]=0,where,λRr.[(2i^+2j^2k^)+λ(2i^+5j^+3k^)]=9λ+7r.[(2+2λ)i^+(2+5λ)j^+(3λ3)k^]=9λ+7..........(3)

The plane passes through the point (2, 1, 3). Therefore, its position vector is given by,

r=2i^+1j^+3k^

Substituting in equation (3), we obtain

(2i^+j^+3k^).[(2+2λ)i^+(2+5λ)j^+(3λ3)k^]=9λ+72(2+2λ)+1(2+5λ)+3(3λ3)=9λ+74+4λ+2+5λ+9λ9=9λ+718λ3=9λ+79λ=10λ=109

Substituting λ=109 in equation (3), we obtain

r.(389i^+689j^+39k^)=17r.(38i^+68j^+3k^)=153

This is the vector equation of the required plane.

New question posted

6 months ago

0 Follower 1 View

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

26. L.H.S L.H.S.=cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]

Here,

c o s ( 3 π 2 + x ) = c o s ( 4 π π 2 + x ) = c o s ( 2 π π 2 + x )

=cos[2π(π2x)];VI quadrant.

cos(π2x);i Ist quadrant. 

= s i n x

cos(2x+x)=cosx,as xlies in Istquadrant.

cot(2π+x)=cotx;asxliesinIstquadrant.

c o t ( 3 π 2 x ) = c o t [ 4 π π 2 x ]

= c o t [ 2 π π 2 x ]

=cot[2x(π2+x)]; VIth quadrant.

=cot(π2+x);IIndquadrat.

= ( t a n x )

= t a n x .

So.L.H.S L.H.S=sinxcosx[tanx+cotx]

= s i n x c o s x [ s i n x c o s x + c o s x s i n x ]

= s i n x c o s x ( s i n 2 x + c o s 2 x ) c o s x s i n x

= s i n 2 x + c o s 2 x

= 1

= R.H.S.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.