Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

17

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

S = {a, b, c}, T = {1, 2, 3}

(i) F: S → T is defined as:

F = { (a, 3), (b, 2), (c, 1)}

⇒ F (a) = 3, F (b) = 2, F (c) = 1 

Therefore, F−1 : T → S is given by

F−1  = { (3, a), (2, b), (1, c)}.

(ii) F: S → T is defined as:

F = { (a, 2), (b, 1), (c, 1)}

Since F (b) = F (c) = 1, F is not one-one.

Hence, F is not invertible i.e., F−1  does not exist.

New answer posted

6 months ago

0 Follower 56 Views

V
Vishal Baghel

Contributor-Level 10

Onto functions from the set {1, 2, 3, …, n} to itself is simply a permutation on n symbols 1, 2, …, n.

Thus, the total number of onto maps from {1, 2, …, n} to itself is the same as the total number of permutations on n symbols 1, 2, …, n, which is n!

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

28. Given, f (x)=

The given fxn is valid for all x such that x – 1 ≥ 0 ⇒x≥ 1

∴ Domain of f (x)= [1,∞)

As x ≥ 1

⇒ x – 1 ≥ 1 – 1

⇒ x – 1 ≥ 0

⇒ ≥ 0

⇒ f (x) ≥ 0

So, range of f (x)= [0,∞ )

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Let S be a non-empty set and P (S) be its power set. Let any two subsets A and B of S.

It is given that: P (X)xP (X)P (X) is defined as A.B=ABA, BP (X)

We know that AX=A=XAAP (X)

A.X=A=X.AAP (X)

Thus, X is the identity element for the given binary operation*.

Now, an element is  AP (X) invertible if there exists BP (X) such that

A*B=X=B*A  (As X is the identity element)

i.e.

AB=X=BA

This case is possible only when A=X=B.

Thus, X is the only invertible element in P (X) with respect to the given operation*.

Hence, the given result is proved.

New answer posted

6 months ago

0 Follower 17 Views

V
Vishal Baghel

Contributor-Level 10

Since every set is a subset of itself, ARA for all A ∈ P (X).

∴R is reflexive.

Let ARB ⇒ A ⊂ B.

This cannot be implied to B ⊂ A.

For instance, if A = {1, 2} and B = {1, 2, 3}, then it cannot be implied that B is related to A.

∴ R is not symmetric.

Further, if ARB and BRC, then A ⊂ B and B ⊂ C.

⇒ A ⊂ C

⇒ ARC 

∴ R is transitive.

Hence, R is not an equivalence relation since it is not symmetric.

New answer posted

6 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

62. 

The given eqn of the lines are

 y - x = 0 _____ (1)

x + y = 0 ______ (2)

x - k = 0 ______ (3)

The point of intersection of (1) and (2) is given by

(y - x) - (x + y) = 0

⇒ y - x -x -y = 0

y = 0 and x = 0

ie, (0, 0)

The point of intersection of (2) and (3) is given by

(x + y) – (x – k) = 0

y + k = 0

y = –k and x = k

i.e, (k, –k)

The point of intersection of (3) and (1) is given by

x = k

and y = k

ie, (k, k).

Hence area of triangle whose vertex are (0, 0), (k, –k)

and (k, k) is

New answer posted

6 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Define f:ΝΝ by

f (x)=x+1

And,  g:ΝΝ by,

g (x) {x1if, x>11f, x=1}

We first show that g is not onto.

For this, consider element 1 in co-domain N. it is clear that this element is not an image of any of the elements in domain.

f is not onto.

Now,  gof:ΝΝ is defined by,

gof (x)=g (f (x))=g (x+1)= (x+1)1 [x, inΝ=> (x+1)>1]=x

Then, it is clear that for yΝ , there exists x=yΝ such that gof (x)=gof (y)

Hence, gof is onto.

New answer posted

6 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

27. Given, f (x)= x 2 + 2 x + 1 x 2 8 x + 1 2

The given function is valid if denominator is not zero.

So, if x2 – 8x+12=0.

x2 – 2x – 6x+12=0

x (x – 2) –6 (x – 2)=0

⇒ (x – 2) (x – 6)=0

x=2 and x=6.

So,  f (x) will be valid for all real number x except x=2,6.

∴ Domain of f (x)=R – {2,6}

New answer posted

6 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Define f:NZ as f(x) and g:ZZ as g(x)=|x|

We first show that g is not injective.

It can be observed that:

g(1)=|1|=1g(1)=|1|=1g(1)=g(1),but,11

g is not injective.

Now, gof:NZ is defined as

gof(x)=y(f(x))=y(x)=|x|

Let x,yN such that gof(x)gof(y)

|x|=|y|

Since x,yN , both are positive.

|x|=|y|x=y

Hence, gof is injective

New answer posted

6 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

61. The given Eqn of the line is x4+y6 = 1 ______ (1)

so, Slope of line = -64=32.

The line ⊥ to line (1) say l2 has

Slope of l2 = 1 (3/2)=23.

Let P (0, y) be the point of on y-axis where it is cut by the line (1)

Then,  04+y6=1

y = 6

i.e, the point P has co-ordinate (0, 6)

Eqn of line ⊥ to x4+y6=1 and cuts y-axis at P (0,6) is

y – 6 = 23 (x – 0)

3y – 18 = 2x

2x – 3y + 18 = 0

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.