Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

89. Let A and d be the first term & common difference of the A.P.

Then,

ap=aA+(p1)d=a ………I

ar=cA+(M1)d=c …………III

So, L.H.S. =(q1)a+(np)b+(qq)c

=(qr)[A+(p1)d]+(np)[A+(q1)d]+(pq)[A+(r1)d]

{putting value for I, II, III}

Aq+q(p1)dArr(p1)d+Ar+r(q1)dApp(q1)d

+Ap+p(r1)dAqq(r1)d

pqdqdrpd+rd+rqdrdpqd+pd+rpdpdrqd+qd

=0= R.H.S

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

88. Let a and r be the first term & common ratio of the G.P.

So, S = a +ar + ar2 +……… upto n terms.

S=a(1rn)1r

and P = a .ar. ar2 ar . upton n terms.

=anr1+2+3++(n1)

=anr(n1)(n1+1)2

=anrn(n1)2

And R = sum of reciprocal of n terms ( 1a+1arn+........... upto n terms)

=1a[(1r)n1]1r1  As r <1

1r >1

=1a[1rn1]1rr=1a[1rnrn]*r1r

=1rnarn*r1r

=1rna(1r)rn1 …. III

Now, L.H.S. = P2 Rn

=[anrn(n1)2]2·[1xna(1n)rn1]n { equation II & III}

=a2nrn(n1)*[1rn]nan(1n)nrn(n1)

=a2xn*rn(x1)rn(n1)*[1xn]n(1r)n

=an[1rn]n(1r)n

=[a[1rn](1r)]n

=Sn=R.H.S { ? equation I}

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

87. Here, a+bxabx=b+cxbcx

(a+bx)(bcx)=(b+cx)(abx)

abacx+b2xbcx2=abb2x+acxbcx2

ababacxacx=b2xb2x+bcx2bcx2

2acx=2b2x

ac=b2

cb=ba …………I

And b+cxbcx=c+dxcdx

(b+cx)(cdx)=(c+dx)(bcx)

bcbdx+c2xcdx=bcc2x+bdxcdx

bcbc+c2x+c2x=bdx+bdxcdx+cdx 

2c2x=2bdx

c2=bd

cb=dc ……………II

From I and II

aa=cb=dc

a, b, c and d are in G.P.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

86. Given, a = 11

Let d and l be the common difference & last term of the A.P.

Then, a+(a+d)+(a+2d)+(a+3d)=56 [first 4 terms sum]

4a+6d=56

6d=564a=564*11=5644=12

d=126=2

And, l+(ld)+(l2d)+(l3d)=112

4l6d=112

4l=112+6d=112+6*2=112+12=124 [last 4 terms sum]

l=1244=31

So, l=31

a+(n1)d=31

11+(n1)2=31

(n1)2=3111=20

n1=202=10

n=10+1

n=11

the A.P. has 11 number of terms.

New answer posted

4 months ago

0 Follower 7 Views

P
Payal Gupta

Contributor-Level 10

85. Let a and r be the first term and common ratio of G.P.

Then, number of term = 2n (even).

a1+a2+?+a2n=5(a1+a3+?+a2n1)[?]

a+ar+.........+ar2n1=5(a+ar2+.......+ar2n11)

a(1r2n)1n=5*a[1(r2)n]1r2 { series on R.H.S. has 2n2=n terms and common ratio ar2a=r2 }

1r2n1r=5[1r2n]1r2 (eliminating a)

1r2r1r=[1r2r1r]*51+r{?a2b2=(ab)(a+b)} 

1=51+r{Eliminating same term}

1+r=5

r=51

r = 4

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

84. Let a, ar and ar2 be the three nos. which is in G.P.

Then, a + ar + ar2 = 56

a ( 1 + r + r2) =56  -I

Given, that a1, ar 7, ar2 - 21 from an AP we have,

(ar7)(a1)=(ar221)(ar7)

ar7a+1=ar221ar+7

ara6=ar2ar14

ar2arar+aa146

ar22ar+a=8

a(r22r+1)=8 ………………. II

Now, dividing equation I by II we get,

a(1+n+n2)a(r22r+1)=568

1+r+r2=7(n22n+1)

1+r+r2=7r214n+7

7r214n+71xr2=0

6r215r+6=0

2r25r+2=0 (dividing by 3 throughout)

2r24rr+2=0

2r(r2)(r2)=0

(r2)(2r1)=0

r2=02r1=0

r=2r=12

So, when r = 2, putting in equation I,

a(1+2+22)=56

a(1+2+4)=56

a(7)=56

a=567=8

The numbers are 8, 8* 2, 8* 22 = 8, 16, 32.

And When r=12 putting in equation I,

a(1+12+122)=56

a(1+12+14)=56

a(4+2+14)=56

a*74=56

a=56*47=32

So, the numbers are 32,32*12,32*(12)232,16,8

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

83. Given, a = 1

a3+a5=90

Let r be the common ratio of the G.P.

So,

Let r be the common ratio of the G.P.

So,

a3+a5=ar3? 1+ar5? 1=90

? a [r2+r4]=90

? 1 [r2+r4]=90? {? a=1}

? r4+r2? 90=0

Let x=r2 so we can write above equation as

x2+x? 90=0x=r2

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

82. Given, a = 5

r=2>1

sn=315

So,  a (rn1)r1=315

5 (2n1)21=315

2n1=3155

2n=63+1

2n=64=26

n=6

Hence, last term =a6=ar61=ar5=5*25=5*32

= 160

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

81. Given, f(x+y)=f(x)f(y).Ux,yN and f(1)=3

Putting (x, y) = (1+1) we get

Putting (x, y) = (1,1) we get,

f(1+1)=f(1)f(1)=33=9

f(2)=9

And putting (x,y)=(1,2) we get,

f(1+2)=f(1)f(2)=3*9=27

f(3)=27

f(1)+f(2)+f(3)+?+f(x)=x=1nf(x)=120 (Given)

As, With a = 3

r=93=3>1

We can write equation I as ,

a(rn1)r1=120

3(3n1)31=120

32(3n1)=120

(3n1)=120*23

3n 1 = 80

3n = 81 +1

3n = 81

3n = 34

n = 4

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

80. Two digits no. when divided by 4 yields 1 as remainder are, 12+1, 16+1, 20+1 …., 96+1

13, 17, 21, ………97 which forms an A.P.

So, a = 13

d=1713=4

l=97

a+ (x1)d=97

13+ (x1)4=97

(x1)4=9713=84

x1=844=21

x=21+1=22

Sum of numbers in A.P. = x2 (a+l)

=222 (13+97)

= 11* 110

= 1210

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.