Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

2. Mean of the given observation is.

x¯=38+70+48+40+42+55+63+46+54+4410

=50010=50.

So,

xi

38

10

48

40

42

55

63

46

54

44

|xi - 50|

12

20

2

10

8

5

13

4

6

Therefore, the required mean deviation about the mean is

 M.D. (x¯)=1ni=1n|xix¯|

=12+20+2+10+8+5+13+4+4+610

=8410

= 8.4

New answer posted

4 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

1. Mean of the given observation is.

x¯=4+7+8+9+10+12+13+178

=808=10.

Deviation of the respective observation about the mean x¯ i.e.,  xix¯ are 4–10,7–10,8–10,9–10,10–10,12–10,13–10,17–10

=6, -3, -2, -1,0,2,3,7

The absolute value of the deviation i.e.,  |xix¯| are 6,3,2,1,0,2,3,7.

Therefore, the required mean deviation about the mean is

M.D= (x¯)=1ni=1n|xix¯|=6+3+2+1+0+2+3+78

=248

= 3.

New question posted

4 months ago

0 Follower 3 Views

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

67. Given, f (x) = (ax2 + sin x) (p +q cos x).

So, f? (x) = (ax2 + sin x) ddx  (p+qcosx)+ (p+qcosx)ddx (ax2+sinx)

= (ax2+sinx) (0+qddxcosx)+ (p+qcosx) (addx (x2)+ddxsinx)

= (ax2+sinx) (q (sinx)+ (p+qcosx) (a·2x+cosx)

= q sin x (ax2 + sin x) + (p + q cos x) (2ax + cos x)

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

66. Given, f (x) = (x2 + 1) cos x

f? (x) = (x2 + 1) ddxcosx+cosxddx (x2+1)

= (x2+1) (sinx)+cosx (2x+0) [? ddxcosx=sinx]

= x2 sin x sin x + 2x cos x.

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

65. Given, f (x) = x4. (5 sin x 3 cos x)

f(x)=x4ddx(5sinx3cosx)+(5sinx3cosx)dx4dx.

=x4[5ddxsinx3·dcosxdx]+[5sinx3cosx]·4x3

As ddxsinx=cosx

and ddxcosx=sinx

Thus,

f(x)=x4[5cosx+3sinx]+[5sinx3cosx]·4x3

=x3[5cosx+3xsinx+20sinx12cosx]

=x3[5xcosx+3xsinx+20sinx12cosx].

New answer posted

4 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

64.  Given, f (x) = sin(x+a)cosx

f(x)=cosxddxsin(x+a)sin(x+a)ddxcosxcos2x

Let g?(x) = sin (x + a)

So, g?(x) = limh0g(x+h)g(x)h

= cos (x + a)

And P(x) = cos x

So, P?(x) = limh0p(x+h)p(x)h

Thus, f?(x) = cosx·cos(x+a)sin(x+a)(sinx)cos2x

=cosx·cos(x+a)+sin(x+a)sinxcos2x

=cos(x+ax)cos2x

=cosacos2x

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

63. Given, f (x) = a+bsinxc+dcosx

f?(x) = (c+dcosx)ddx(bsinx)(a+bsinx)ddx(c+dcosx)(c+dcosx)2

f(x)=(c+dcosx)·b·ddx(sinx)(a+bsinx)·d·ddx(cosx)(c+dcosx)2_____(1)

{Copy (A)}

So, g?(x) = limh0g(x+h)g(x)h

=limh01h[cos(x+h)cosx]

=limh01h[2·sin(x+h+x2)sin(x+hx2)]

=limh01h[2sin(2x+h2)sin(h2)]

=sin(2x+02)*1

= sin x ______ (2)

And p?(x) = limh0p(x+h)p(x)h

=limh0sin(x+h)sinxh

=limh01h2cos(2x+h2)sin(h2)

=limh0cos(2x+h2)*limh0sin(h2)(h2)

= cos x _____ (3)

So, put (2) and (3) in (1) we get,

f(x)=(c+dcosx)(b·cosx)(a+bsinx)(d·sinx)(c+dcosx)2

=beccosx+bdcos2x+adsinx+bdsin2x(c+dcosx)2

=bccosx+adsinx+bd(cos2x+sin2x)(c+dcosx)2

=bccosx+adsinx+bd(c+dcosx)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

62. Given, f (x) =sinnx

By chain rule,

f? (x) = n (sin x)n-1 ddh sin x

Let (gx) = sinx

So, g? (x) limh0g (x+h)g (x)h

=limh0sin (x+h)sinxh

=limh02hcos (2a+h2)sin (h2)

=limh0cos (2x+h2)*limh0sin (h2)h2

cos (2x+0)2*1

= cos x.

So, f? (x) = n (sin x)n-1 cos x.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

61. Given, f (x) = secx1secx+1

=1cosx11cosx+1

=1cosx1+cosx

So, f?(x) = (1+cosx)ddx(1cosx)(1cosx)ddx(1+cosx)(1+cosx)2

=(1+cosx)(1)ddx(cosx)(1cosx)ddx(cosx)(1+cosx)2

Let g(x) = cos x.

So, g?(x) =limh0g(x+h)g(x)h

=limh0cos(x+h)cosxh

=limh02hsin(x+h+x2)sin(x+hx2)

=limh02hsin(2x+h2)sin(h2)

=limh0sin(2x+h2)*limh0sinh2h2

=sin(2x+02)*1

= -sin x.

So, f?(x) (1+cosx)(1)(sinx)(1cosx)(sinx)(1+cosx)2

=sinx+cosxsinx+sinxsinxcosx(1+cosx)2

=2sinx(1+cosx)2

=2sinx(1+1secx)2=2sinx*sec2x(secx+1)2=2secx·sinx(sinx+1)2·cosx.

=2secx·tanx(sinx+1)2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.