Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

60. Given, f (x) = sinx+cosxsinxcosx

So, f?(x) = sinxcosxddx(sinx+cosx)(sinx+cos2)ddx(sinxcosx)(sinxcosx)2

Let g(x) = cos x and p(x) = sin x.

{from so g'(x) A ) (upto equation 3)

Let g(x) = cos2 and p(x) = sin x.

So, g?(x) = limh0g(x+h)g(x)h

=limh01h[cos(x+h)cosx]

=limh01h[2·sin(x+h+x2)sin(x+hx2)]

=limh01h[2sin(2x+h2)sin(h2)]

=sin(2x+02)*1

= -sin x ______ (2)

And p?(x) = limh0p(x+h)p(x)h

=limh0sin(x+h)sinxh

=limh01h2cos(2x+h2)sin(h2)

=limh0cos(2x+h2)*limh0sin(h2)(h2)

= cos x _____ (3)

Putting (2) and (3) in (1) we get,

f(x)=(sinxcosx)[cosxsinx](csinx+cosx)[cosx+sinx](sinxcosx)2

=(sinxcosx)2(sinx+cosx)2(sinxcosx)2

=(sin2x+cos2x)+2sinxcosx(sin2x+cos2x)2sinxcosx(sinxcosx)2

=11(sinxcosx)2=2(sinxcosx)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

59. Given, f (x) = cosx1+sinx

So, f?(x) = (1+sinx)ddx(cosx)cosxddx(1+sinx)(1+sinx)2

Putting (2) and (3) in (1) we get,

f(x)=(1+sinx)(sinx)cosx(cosx)(1+sinx)2

=sinxsin2xcos2x(1+sinx)2

=sinx(sin2x+cos2x)(1+sinx)2

=(sinx+1)(1+sinx)2=11+sinx.

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

58. Given f (x) = cosec x. cot x.

By Leibnitz product rule,

So, g(x) = limh0g(x+h)g(x)h

=limh0cot(x+h)cotxh

=limh01h[cos(x+h)sin(x+h)cosxsinx]

=limh01h[sinxcos(x+h)cosxsin(x+h)sinxsin(x+h)]

=limh01h[sin(x(x+h))sinxsin(x+h)] [?csin(AB)=sinAcosBcosAsinB]

=limh01h[sin(h)sinx.sin(x+h)]

=limh01sinxsin(x+h)*(1)limh0sinhh

=1sinxsin(x+0)*(1)

= -cosec2x.______(2)

And hx) = limh0h(x+h)h(x)h

=limh0cosec(x+h)cosecxh

=limh01h[1sin(x+h)1sinx]

=limh01h[sinxsin(x+h)sinx·sin(x+h)]

=limh01h[2cos(x+x+h2)sin(x(x+h)2)sinxsin(x+h).]

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

57. Given, f (x) = sin (x + a)

So, f (x) = limh0f (x+h)f (x)h

=limh0sin (x+h+a)sin (x+a)h

=limh01h·2cos (x+h+a+x+a2)sin (x+h+a (x+a)2)

=limh0cos (2x+2a+h2)limh0sin (h2)h2

=cos (2x+2a+0)2*1

= cos (x + a)

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

56. Given, f (x) = (ax + b)n (cx + d)m

So, f'(x) = (ax+b)nddx(cx+d)n+(cx+d)mddx(ax+b)n

=(ax+b)x·mc(cx+d)m1+(cx+d)mna(ax+b)x1

=(ax+b)n1(cx+d)m1[(ax+b)·mc+(cx+d)na]

=(ax+b)n1(cx+d)m1[mc(ax+b)+na(cx+d)]

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

55. Given, f (x) = (ax + b)n

Chain rule,  ddxu (x)n=nu (x)n1dudxu (x) where

u (x) is a function of x.

So, f (x) = ddx (ax+b)n

=n (ax+b)n1ddx (ax+b)

=na (ax+b)n1

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

54. 

So f? (x) ddx (42)

=ddx (4)ddx (2)

=4ddx (x12)0=4*12x121=2x12=2

 

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

53. Given, f (x) = =ax4bx+cosx

So, f(x) = limh0f(x+h)f(x)h

=limh01h[a(x+n)4b(x+h)2+cos(x+h)(ax4bx2+cosx)]

=limh0ah[1(x+h)41x4]limh0bh[1(x+h)21x2]+limh01h[cos(x+h)cosx]

=limh0ah[x4(x+h)4(x+h)4·x4]limh0bh[x2(x+h)2(x+h)2·x2]+

limh01h[2sin(x+h+x2)sin(x+hx2)]

=limh0ah[x4x44x3h6x2h24xh3h3x4·(x+h)4]limh0bh[x2x2h22xhx2(x+h)2]

+limh0ah[2sin(2x+h2)sinh2]

=limh0ah[h(4x36x2h4xh2h2)x4(x+h)4]limh0bh[h(h2x)x2(x+h)2]

limh0sin(2x+h2)limh0sinh2h2

=limh0a(4x36x2h4xh2h2)x4(x+h)4limh0b(h2x)x2(x+h)2

sin(2x+02)*1

=a(4x3)x4·x4b(2x)x2·x2sinx.

=4ax5+2bx3sinx

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

52. Given, f (x) = px2+qx+rax+b

f(x)=(ax+b)ddx(px2+qx+r)(px2+qx+r)ddx(ax+b)(ax+b)2

=(ax+b)(2xp+q)(px2+qx+r)(a)(ax+b)2

=2apx2+2bpx+aqx+bqapx2aqxar(ax+b)2

=apx2+2bpx+bqar(ax+b)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

51. Given, f (x) = (ax+b)px2+qx+r

So, f(x) = (px2+qx+r)ddx(ax+b)(ax+b)ddx(px2+qx+r)(px2+qx+r)2

 =(px2+qx+r)a(ax+b)(2xp+q)(px2+qx+r)2

=apx2+aqx+ar2apx2aqx2bpxb(px2+qx+9)2q.

=apx22bpx+arbq(px2+qx+r)2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.