Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

99. The given series is.

131+13+231+3+13+23+331+3+5 +…………. upto nth term,

The nth term is ,

an=13+23+33+........+n31+3+5+........+n...terms { A.P. of n terms and a = 1, d = 5-3 = 2}

an=[n(n+1)2]2n2[2*1+(n1)2]

an=n2(n+1)24n2[2+(n1)2]=n2(n+1)24n[1+n1]

an=n2(n+1)24n2=(n+1)24

an=n2+2x+14=n24+n2+14

Sn=an=14x2+12n+1

=14*9(n+1)(2n+1)6+12*n(x+1)2+14*n

=n4[(n+1)(2n+1)6+(n+1)+1]

=n4[2n2+n(n+1)(2n+1)+6(x+1)+66]

=n4[2n2+n+2n+1+6n+6+66]

=n4[2n2+9n+136]

=n(2n2+9n+13)24

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

98. Given,

S1 = 1 + 2 + 3 + ………. + n =n+(n+1)2

S2 = 12 + 22 + 32 + ………… + n2  =n(n+1)(2n+1)6

S3 = 13 + 23 + 33 + …………. + n3 =[n(n+1)2]2

So, L.H.S. =9S22=9*[n(n+1)(2n+1)6]2

=9*n2(n+1)2(2n+1)236

=n2(n+1)2(2n+1)24

R.H.S. =S3(1+8S1)=[n(n+1)2]2[1+8*n(n+1)2]

=n2(n+1)24*[1+4n(n+1)]

=n2(n+1)24[1+4n2+4n]

=n2(n+1)24[(2n)2+2(2n)1+12]

=n2(n+1)24(2n+1)2= L.H.S.

So, 9(S2)2 = S3 ( 1 + 8S1)

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

97. The given series is 3+7+13+21+31+ ……. upto n terms

So, Sum, Sn = 3+7+13+21+31+ ………….+ an-1 + an

Now, taking,

Sn = Sn = [ 3 + 7 + 13 + 21 + 31 + ………. an-1 + an ] [ 3+ 7 + 21 + 31 + … an-1 + an]

0 = [ 3+ (7 - 3) + (13 - 7) + (13 - 7) + (21 - 13) + …….+ (an an-1) - an]

0 = 3 + [ 4 + 6 + 8 +…….+ (n-1) terms] an

an=3+{n12[2*4+[(n1)1]2]} { ? 4 + 6 + 8 + ……. is sum of A.P. of n 1 terms with a = 4, d = 6- 4 = 2}

an=3+{n12[8+(n2)2]}

an=3+{n12*2[4+n2]}=3+(n1)(n+2)

an = 3 + n2 + (1 + 2) n + (-1) (2) { ? (a + b) (a + b) = a2 + (b + c) a + bc }

an = 3 + n2 + n- 2 = n2 + n +1

sum of series, Sn=an=n2+n+1

=n(n+1)(2n+1)6+n(x+1)2+n

=n[(n+1)(2n+1)6+n+12+1]

=n[(n+1)(2n+1)+3(n+1)+66]

=n[2n2+n+2n+1+3n+3+66]

=n[2n2+6n+10]6]

=n[2(n2+3n+5)6]

=n(n2+3n+5)3

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

96. Given, series is 2*4+4*6+6*8++n terms.

So, a20 = ( 20th term of A.P. 2, 4, 6 ….) ( 20th term of A.P. 4,6,8 ………)

i.e. a = 2, d = 4 -2 = 2 i.e. a =4, d = 6- 4 = 2

= [2 + (20- 1)2] [4 + (20-1)2]

= [2+19*2] [4 +19 *2]

= (2+38) (4+38)

= 40*42 = 1680

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

95. (i) Sn = 5+55+555+…………… upto n term

=5(1+11+111+ …………….upto n term )

Multiplying and dividing by 9 we get

=59(9+99+999+…upto nterms)

=59[(101)+(1001)+(0001)+.upto nterms] =59[(10+100+1000+?n)(1+1+1...upto nterms]

=59[(10+102+103+?upto nterms
n*1]

=59[10(10n1)101n] { ?10+102+103+ntermsisaG.Pofa=10,r=10>1nterms }

=59*[109(10n1)n]

=5081(10n1)5n9

 

(ii) Sn=0.6+0.66+0.666+n

=6[0.1+0.11+0.111+?uptonterms]

=69[0.9+099+0.999+?uptonterms] {multiplying and dividing by 9}

=69[(10.1)+(10.01)+(10.001)+?uptonterms]

=69[(1+1+1n)(0.1+0.01+0.001+uptonterms)]

=69[n*1(110+1100+11000+?uptonterms)]

=69[n(110+110*110+110*(110)2+?uptonterms)]

=69[n110(1(110)n)1110]

=69[n1(110)n101]

=69[x19(1110n)]

=69*19[9x(1110n)]

=227[9n(1110n)]

=227[9n1+110n]

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

94. As a, b, c are in A.P. we can write,

ba=cb

b+b=a+c

2b=a+c I

As b, c, d are in G.P. we can write,

cb=dc

c2=bd II

And ar 1c,1d,1e are in A.P. we can write,

1d1c=1e1d

1d+1d=1c+1e

2d=e+cce

d2=cee+c

d=2cec+e …………. III

Now, c2=Bd from II

=a+c2*2cec+c {from 1 and 3}

c2=(a+c)cec+e

c=(a+c)e(c+e)

c(c+e)=(a+c)e

c2+ce=ac+ce

c2=ae

ca=ec

i.e., a, c and e are in G.P.

New question posted

4 months ago

0 Follower 1 View

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

92. Given, ab are roots of x23x+p=0

and c & d are roots of x212x+q=0

So, a+b=(3)1 and ab=P1

a + b = +3 ………….I and ab = P…………….II { ? sum of roots = BA , Product of roots = CA }

Similarly, c + d =(12)1 and cd=q1

c + d = 12 ……….III ad cd = q (4)

As a, b, c, d from a G.P and if r be the common ratio

a = a

b = ar

c = ar2

d = ar3

So, from equation, (1),

a+b=3a+ar=3a(1+r)=3 (5)

And c+d=12ar2+ar3=12ar2(1+r)=12 (6)

Dividing equation (6) and (5) we get,

ar2(1+r)a(1+r)=123

 r2 = 4

Now, L.H.S. =q+pqp=cd+abcdab {from (4) and (5)}

=ar2*ar3+a*arar2+ar3a*ar

=a2r(r4+1)a2r(r41)

=(r2)2+1(r2)21=42+1421=16+1161=1715 = R.H.S.

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

91. Let r be the common ratio of the G.P.

Then, a, b, c, d a, ar, ar2, ar3

So, an+bn=an+(ar)n=an+anrn=an(1+rn)(1)

bn+cn=(ar)n+(ar2)n=anrn+anr2n=anrn(1+rn) (2)

cn+dn=(ar2)n+(ar3)n=anr2n+anr3n=anr2n(1+rn) (3)

Hence, bn+cnan+bn=anrn(1+rn)an(1+rn)=rn {from (2) and (1)}

and  cn+dnbn+cn=anr2n(1+r2)anrn(1+r2)=rn {from (3) and (2)}

i.e., bn+cnax+bn=cn+dnbx+cn

an+bn,bn+cn,cn+dn are in A.P

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

90. Given, a(1b+1c),b(1c+1a),c(1a+1b) are in A.P.

So, a(c+b)bc,b(a+c)ac,c(b+a)ab are in A.P.

ac+abbc,ab+bcac,bc+acab are in A.P.

If we add 1 to all each terms of the sequence it will given be an A.P of common difference 1.

So, ac+abbc+1,ab+bcac+1,bc+acab+1 are in A.P.

ac+ab+bcbc,ab+bc+acac,Bc+ac+abab are in A.P.

Dividing add of the sum by ab + bc + ac will conserve.

then A.P so,

1bc,1ac,1ab are in A.P.

Similarly multiplying each term by abc we get,

abcbc,abcac,abcab are in A.P.

a, b, c, are in A.P.

Hence proved

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.