Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

48. Given, f (x) = 1ax2+bx+c

So, f? (x) =  (ax2+bx+c)ddx (1)1·ddx (ax2+bx+c) (ax2+bx+c)2

= (ax2+bx+c) (0) (2ax+b) (ax2+bx+c)2

= (2ax+b) (ax2+bx+c)2

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

49. Given, f (x) = 1+1x11x=x+1xx1x=x+1x1

So, f (x) =  (x1)ddx (x+1) (x+1)ddx (x1) (x1)2

(x1) (x+1) (x1)2

=x1x1 (x1)2=2 (x1)2

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

48. Given, f (x) = ax+bcx+d

So, f (x) =  (cx+d)ddx (ax+b) (ax+b)ddx (cx+d) ( (x+d)2

= (cx+d)a (ax+b)c (cx+d)2

=acx+adacxcb (cx+d)2

=adbc (cx+d)2

New answer posted

4 months ago

0 Follower 20 Views

P
Payal Gupta

Contributor-Level 10

106. Let 'x' be the no of days in which 150 workers took to finish the job.

If 150 workers worked for x days then number of workers for x days =150 x.

But given that number of works dropped 4 on 2nd day, then 4 on 3rd day and so on taking 8 more

days to finish the work. i.e., x + 8 days we can express as.

150 x = 150 + (150  4) + (150  4  4)+……+ (x + 8) days.

150 x = 150 + 146 + 142 +……… (x+8) days which

R.H.S. from as A.P. of

a = 150

d = -4 and n = x +8

So, Sn = 150 x

n2 [2*150+ (n1) (4)]=150x

n [ 150 + (n - 1) (-2)] = 150 (n - 8) [ ?  n = x +8 x  8  x]

150n 2n (n - 1) 150n 1200

2n2 + 2n 1200 =0

n2 - n - 6

...more

New answer posted

4 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

105. Given,

Cost of machine =? 15625

depreciation rate = 20 % each year.

We have,

Depreciated value after 1st year =? 15625 - 20 % of 15625

=?  1562520100* ?15625

=?  15625 (120100)

=?  15625* (115)

=?  15625*45

Similarly,

Depreciated value after 2nd year =? 15625 * (45)2 and so on.

This, Depreciated value at end of 5 years

=? 15625 * (45)5

=? 15625 *10243125

=? 5120

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

104. Given,

Principal amount =? 10000

Amount at end of 1 year =?   (10000+10000+5*1100)

=? (10000 + 500)

=? 10500 {Amount paid = principal + S.I. in a year}

S.I=Principal*rate*time100

Amount at end of 2nd year

=?   (10000+10000*5*2100) {Principal*rate*time100}

=? (10000 + 1000)10500 + 500

=? 11000

Amount at end of 3rd year

=?   (10000+10000*5*3100)

=? (1000 + 1500)

=? 11500

So, amount at end of 1st, 2nd, 3rd ………, nth year forms as A.P.

i.e.? 10500? 11000? 115000, ………. with

a = 10500

d = 11000 - 10500 = 500

Now, Amount in 15th year = Amount at end of 14th year

=? 10500 + ( 14 - 1) * 500

=? 10500 + 13 * 500

=? 10500 + 6500

=? 17000

Similarly amount after 20th year, =? 10500+ (20 - 1) * 500

=? 10500 + 19 * 500

=? 10500 + 9500

=

...more

New answer posted

4 months ago

0 Follower 5 Views

P
Payal Gupta

Contributor-Level 10

103. As the number of letters mailed forms a G.P. i.e., 4, 42, ……., 48

We have,

a = 4

r=424=4

and n = 8

So, Total numbers of letters = 4 + 43 + ……. + 48

=4 (481)41

=4* (655361)3

=43*65535

=48*21, 845

= 87380

As amount spent on one postage = 50 paise = ?  50100

So, for reqd. postage =?  50100*87380

=? 43690

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

102. Given, cost of scooter = ?22,000

Amount paid =? 4000

Amount unpaid =? 22,000 -? 4000 =? 18,000

Now, Number of installments =Amount unpaid/Amount of each instalment

 

As he per 10% interest on up unpaid amount and ?1000 each installment

Amount of 1st instalment =? 1000 +?  18000*10*1100 = ?1000 + ?1800 =? 2800

Amount of 2nd installment =? 1000 +?   (180001000)*10*1100 =? 1000 +? 1700 =? 2700

Similarly,

Amount of 3rd installment =? 1000 +?   (170001000)*10*1100 =? 1000 +? 1600 =? 2600

So, Total installment paid =? 2800 +? 1600 =? 2600 + …… upto 18 installment

=182 [2*2800+ (181) (100)]

= 9 [5600 - 1700]

= 9 * 3900

=? 35,000

Total cost of scooter = Amount + Total instal

...more

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

101. Given,

cost of tractor =? 12,000

Amount paid =? 62,000

Amount unpaid =? 12000 -? 6000 =? 6000

So, number of instalments =     

 

= ?  6000500

= 12 = n

Now, interest on 1st installment = interest on unpaid amount ( i.e.? 6000) for 1 Year.

=?  6000*12*1100 = ?720

Similarly,

Interest on 2nd installment = interest on (? 6000 -? 500) for the next 1 year

=?  5500*12*1100 = ?660

And,

Interest on 2nd installment =?   (5500500)*12*1100

=? 600

Here, Total (interest per) installment paid =? (720 + 660 + 600 + ……. upto 12 terms)

=122 [2 (720)+ (121) (60)]  { ? 720 + 660 + 600 …….is an A.P. of a = 720, d = 660 - 720  = - 60}

= 6 [ 1440 -

...more

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

100. Given, 1*22+2*32+?+n(n+1)212*2+22+3+?+n2(n+1)

For numerator,

a  (nth term) = n (n + 1)2 = n (n + 1)2 = n (n2 + 2n +1) = n3 + 2n2 + n

So, Sn=an=n3+2n2+n

=n2(n+1)24+2(n+1)(2n+1)n6+n(n+1)2

=n(n+1)2[n(n+1)2+2(2n+1)3+1]

=n(n+1)2[3n(n+1)+2*2(2n+1)+66]

=n(n+1)12[3n2+3n+8n+4n+6]

=n(n+1)12[3n2+11n+10]

=n(n+1)12[3n2+6n+5n+10]

=n(n+1)12[(33n(n+2)+5(n+2)]

=n(n+1)(n+2)(3n+5)12

For denominator,

an (nth term) = n2 (n + 1) = n3 + n2

So,

Sn=an=n3+n2

=n2(n+1)24+n(n+1)(2n+1)6

=n(n+1)2[n(n+1)2+(2n+1)3]

=n(n+1)2[3n(n+1)+2(2n+1)6]

=n(n+1)2[3n2+3n+4n+26]

=n(n+1)2[3n2+6n+1n+26]

=n(n+1)2[3n(n+2)+(n+2)6]

=n(n+1)(n+2)(3n+1)12]

So, 1*22+2*32+?+n(n+1)212*2+22*3+?+n2(n+1)=n(n+1)(n+2)(3n+5)12n(n+1)(n+2)(3n+1)12

=3n+53n+1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.