Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

31. Given, limx1f (x)2x21=π

limx1f (x)2limx1x21=π

limx1 [f (x)2]=πlimx1 (x21)

limx1f (x)limx12=π (121)

limx1f (x)2=0.

limx1f (x)=2

New answer posted

4 months ago

0 Follower 8 Views

A
alok kumar singh

Contributor-Level 10

30. Given, f(x)={|x|+1,x<00,x=0|x|1,x>0limxaf(x)=?

As | x | = {x,x<0x,x>0

We can rewrite f (x) = {x+1,x<00,x=0x1,x>0.

Case 1: when a<0,

limxaf(x)=limxa(x+1)=a+1

So, limxaf(x) = exist such that a< 0

Case II when a> 0,

limxaf(x)=limxa(x1)=a1

So, limxaf(x) exist such that a>0.

Case III when a = 0.

L.H.L = limxaf(x)=limxa(x+1)=limx0(x+1)=1

R.H.L = limxa+f(x)=limxa+(x1)=limx0+(x1)=1

Thus, limxaf(x)limxa+f(x)

So, limxaf(x) does not exist at a = 0.

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

28. Given, f (x) =  {a+bx, x<14, x=1bax, x>1

Since we need limx1f (x) we need,

LHL =

limx1f (x)=limx1 (a+bx) = a + b * 1 = a + b

and RHL =

limx1+f (x)=limx1+ (bax) = b - a * 1 = b - a

Given,  limx1f (x)=f (1): we have the following equations

a + b = 4 ____ (1)

b - a = 4 ____ (2)

Adding (1) and (2) we get,

2b = 8

b = 4

Putting b = 4 in (1) we get

a + 4 = 4

a = 0

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

27. limx5f (x)=limx5|x|5

= | 5 | 5

= 5 5

= 0

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

26. Given, f (x) {x|x|, x00, x=0

L.H.S = limx0f (x)=limx0xx=limx01=1

R.H.L limx0+f (x)=limx0+xx=limx0+1=1

Thus,  limx0f (x)limx0+f (x)

i e,  limx0f (x) does not exist.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

25. Given f (x) = {|x|x,x00,x=0,limx0f(x)=?

We know that, |x|={x,x0x,x<0

Now,

L.H.L = limx0f(x)=limx0xx=limx01=1

and R.H.L = limx0+f(x)=limx0+xx=limx0+1=1

Thus, limx0f(x)limx0+f(x)

i e, limx0f(x) does not exist.

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

24. Given f (x)= {x21, x1x21, x>1, limx1f (x)=?

Now, L.H.L = limx1f (x)=limx1 (x21)

12- 1 = 0

And R.H.L = limx1+f (x)=limx1+ (x21)  (1)2 1 = 1 = 2.

Thus,  limx1f (x)limx1+f (x)

So,  limx1f (x) does not exist.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

23. Given f (x) {2x+3,x03(x+1),x>0}

for limx0f(x),

left hand limit, L.H.S = limx0f(x) = limx0(2x+3)

= 2 0 + 3 = 3.

Right hand limit, R.H.L = limx0+f(x)=limx0+3(x+1)

= (0 + 1) = 3 1 = 3.

Thus, limx0f(x)=limx0+f(x)=limx0f(x)=3

For limx1f(x),

L.H.L = limx1f(x)=limx13(x+1)=3(1+1)=3*2=6

R.H.L = limx1+f(x)=limx1+3(x+1)=3(1+1)=3*2=6.

Thus, limx1f(x)=limx1+f(x)=limx1f(x)=6.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

22. limxx2tan2xxπ2

Put y = x π2 . So that as y 0 cos π2

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

21. limx0(cosecxcotx)=limx0(1sinxcosxsinx)

=limx0(1cosxsinx)

=limx02sin2x22sinx2cosx2 {?cos2x=12sin2x1cos2x=2sin2x1cosx=2sin2x2?sin2x=2sinxcosxsinx=2sinx2cosx2{

=limx0x2

=tan02=0.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.