Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

(x+1)dydx=2ey1dy2ey1=dxx+1eydy2ey=dxx+1

Integrating both sides, we get:

eydy2ey=log|x+1|+logC..........(1)Let2ey=tddy(2ey)=dtdyey=dtdyeydy=dt

Substituting this value in equation (1), we get:

dtt=logog|x+1|+logClog|t|=log|C(x+1)|log|2ey|=log|C(x+1)|12ey=C(x+1)2ey=1C(x+1)..........(2)

Now, at x=0& y=0, equation (2) becomes:

21=1CC=1

Substituting C=1 in equation (2), we get:

2ey=1x+1ey=21x+1ey=2x+21x+1ey=2x+1x+1y=log|2x+1x+1|,(x1)

This is the required particular solution of the given differential equation.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given differential equation is:

dydx+ycotx=4xcosecx

This equation is a linear equation of the form

dydx+Py=Q,where,p=cotx&Q=4xcosecxNow,I.F=ePdx=ecotxdx=elog|sinx|=sinx

The general solution of the given differential equation is given by,

y(I.F)=(Q*I.F.)dx+C

ysinx=(4xcosecx.sinx)dx+Cysinx=4xdx+Cysinx=4.x22+Cysinx=2x2+C..........(1)Now,y=0at,x=π2

Therefore, equation (1) becomes:

0=2*π2+CC=π22

Substituting C=π22 in equation (1), we get:

ysinx=2x2π22

This is the required particular solution of the given differential equation.

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

(xy)(dx+dy)=dxdy(xy+1)dy=(1x+y)dxdydx=1x+yxy+1dydx=1(xy)1+(xy)..........(1)Let,xy=tddx(xy)=dtdx1dydx=dtdx1dtdx=dydx

Substituting the values of xy and dydx in equation (1), we get:

1dtdx=1t1+tdtdx=1(1t1+t)dtdx=(1+t)(1t)1+tdtdx=2t1+t

(1+ttdt)=2dx(1+1t)dt=2dx..........(2)

Integrating both sides, we get:

t+log|t|=2x+C(xy)+log|xy|=2x+Clog|xy|=x+y+C..........(3)

Now,y=1,at,x=0

Therefore, equation (3) becomes:

log1=01+C

C=1

Substituting C=1 in equation (3), we get:

og|xy|=x+y+1

This is the required particular solution of the given differential equation .

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

yexydx=(xexy+y2)dyyexydxdy=xexy+y2exy[y.dxdyx]=y2exy.[y.dxdyx]y2=1..........(1)

Let,exy=z

Differentiating it with respect to y, we get:

(exy)=dzdyexy.ddy(xy)=dzdyexy.[y.dxdyxy2]=dzdy..........(2)

From equation (1) and equation (2), we get:

dzdy=1dz=dy

Integration both sides, we get:

z=y+Cexyy+C

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(1+e2x)dy+(1+y2)exdx=0dy1+y2+exdx1+e2x=0

Integrating both sides, we get:

tan1y+exdx1+e2x=C..........(1)Let,ex=te2x=t2ddx(ex)=dtdxex=dtdxexdx=dt

Substituting these values in equation (1), we get:

tan1y+dt1+t2=Ctan1y+tan1t=Ctan1y+tan1(ex)=C..........(2)Now,y=1,at,x=0

Therefore, equation (2) becomes:

tan11+tan11=Cπ4+π4=CC=π2

Substituting C=π2 in equation (2), we get:

tan1y+tan1(ex)=π2

This is the required solution of the given differential equation.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The differential equation of the given curve is:

sinxcosydx+cosxsinydy=0sinxcosydx+cosxsinydycosxcosy=0tanxdx+tanydy=0

Integrating both sides, we get:

log(secx)+log(secy)=logClog(secx.secy)=logCsecx.secy=C..........(1)

The curve passes through point (0,π4)

1*√2=CC=√2

On subtracting C=√2 in equation (10, we get:

secx.secy=√2secx.1cosy=√2cosy=secx/√2

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given: Differential equation dydx+y2+y+1x2+x+1=0

dydx+y2+y+1x2+x+1=0dydx= (y2+y+1)x2+x+1dyy2+y+1=dxx2+x+1dyy2+y+1+dxx2+x+1=0

Integrating both sides,

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Kindly go through the solution

 

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The equation of a circle in the first quadrant with centre (a, a) and radius (a) which touches the coordinate axes is:

(xa)2+(ya)2=a2..........(1)

Differentiating equation (1) with respect to x, we get:

2(xa)+2(ya)dydx=0(xa)+(ya)y'=0xa+yy'ay'=0x+yy'a(1+y')=0a=x+yy'1+y'

Substituting the value of a in equation (1), we get:

[x(x+yy'1+y')]2+[y(x+yy'1+y')]2=(x+yy'1+y')2[(xa)y'(1+y')]2+[yx1+y']2=[x+yy'1+y']2(xy)2.y'2+(xy)2=(x+yy')2(xy)2[1+(y')2]=(x+yy')2

Hence, the required differential equation of the family of circles is (xy)2[1+(y')2]=(x+yy')2

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.