Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

4 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

dydx=x33xy2y33x2y..........(1)

This is a homogenous equation. To simplify it, we need to make the substitution as:

y=vxddx(y)=ddx(vx)dydx=v+xdvdx

Substituting the values of y and dvdx in equation (1), we get:

v+xdvdx=x33x(vx)2(vx)33x2(vx)v+xdvdx=13v2v33vxdvdx=13v2v33vvxdvdx=13v2v(v33v)v33vxdvdx=1v4v33v(v33v1v4)dv=dxx

Integrating both sides, we get:

(v33v1v4)dv=logx+logC'.........(2)Now,(v33v1v4)dv=v3dv1v43vdv1v4(v33v1v4)dv=I13I2,Where,I1=v3dv1v4andI2=vdv1v4...........(3)

Let,1v4=t.ddv(1v4)=dtdv4v3=dtdvv3dv=dt4Now,I1=dt4=logt=14log(1v4)

And,I2=vdv1v4=vdv1(v2)2Let,v2=p.ddv(v2)=dpdv2v=dpdvvdv=p2I2=12dp1p2=12*2log|1+p1p|=14log|1+v21v2|

Substituting the values of I1 and I2 in equation (3), we get:

(v33v1v4)dv=14log(1v4)34log|1+v21v2|

Therefore, equation (2) becomes:

14log(1v4)34log|1+v21v2|=logx+logC'14log[(1v4)(1+v21v2)]=logC'x(1+v2)4(1v2)2=(C'x)4(1+y2x2)4(1y2x2)2=1C'4x4(x2+y2)4x4(x2y2)2=1C'4x4(x2y2)2=C'4(x2+y2)4(x2y2)=C'2(x2+y2)2x2y2=C(x2+y2)2,whereC=C'2

Hence, the given result is proved.

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

Equation of the given family of curves is  (xa)2+2y2=a2

(xa)2+2y2=a2x2+a22ax+2y2=a22y2=2axx2..........(1)

Differentiating with respect to x, we get:

2ydydx=2a2x2dydx=ax2ydydx=2a2x24xy..........(2)

From equation (*1), we get:

2ax=2y2+x2

On substituting this value in equation (3), we get:

dydx=2y2+x22x24xydydx=2y2x24xy

Hence, the differential equation of the family of curves is given as dydx=2y2x24xy

New answer posted

4 months ago

0 Follower 14 Views

V
Vishal Baghel

Contributor-Level 10

(i) yae2+bex+x2

Differentiating both sides with respect to x, we get:

dydx=addx(ex)+bddx(ex)+ddx(x2)dydx=aexbex+2x

Again, differentiating both sides with respect to x, we get:

d2ydx2=aexbex+2x

Now, on substituting the values of dydx and d2ydx2 in the differential equation, we get:

L.H.S

xd2ydx2+2dydxxy+x22=x(aexbex+2)+2(aexbex+2x)x(aex+bex+x2)+x22=(xaexbxex+2x)+(2aex2bex+4x)(axex+bxex+x3)+x22=2aex2bex+x2+6x20

Therefore, Function given by equation (i) is a solution of differential equation. (ii).

(ii) y=ex(acosx+bsinx)=aexcosx+bexsinx

Differentiating both sides with respect to x, we get:

dydx=a.ddx(excosx)+b.ddx(exsinx)dydx=a(excosxexsinx)+b.(exsinx+excosx)dydx=(a+b)excosx+(ba)exsinx

Again, differentiating both sides with respect to x, we get:

d2ydx2=(a+b).ddx(excosx)(ba)ddx(exsinx)d2ydx2=(a+b).[excosxexsinx]+(ba)[exsinx+excosx]d2ydx2=ex[(a+b)(cosxsinx)+(ba)(sinx+cosx)]d2ydx2=ex[acosxasinx+bcosxbsinx+bsinx+bcosxasinxacosx]d2ydx2=[2ex(bcosxasinx)]

Now, on substituting the values of d2ydx2 and dydx in the L.H.S of the given differential equation, we get:

d2ydx2+2dydx+2y=2ex(bcosxasinx)2ex[(a+b)cosx+(ba)sinx]+2ex(acosx+bsinx)=ex[(2bcosx2asinx)(2acosx+2bcosx)(2bsinx2asinx)+(2acosx+2bsinx)]=ex[(2b2a2b+2a)cosx]+ex[(2a2b+2a+2b)sinx]=0

Therefore, Function given by equation (i) is solution of differential equation (ii)

(iii)&nb

...more

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(i) Given: Differential equation   d2ydx2+5x(dydx)26y=logx

The highest order derivative present in this differential equation is d2ydx2 and hence order of this differential equation if 2.

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivative d2ydx2 is 1.

Therefore, Order = 2, Degree = 1

(ii) Given: Differential equation (dydx)34(dydx)2+7y=sinx

The highest order derivative present in this differential equation is dydx and hence order of this differential equation if 1.

The given differential equation is a polynomial equation in derivatives and highest power of the highest order derivativ

...more

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1y2)dxdy+yx=y(1<y<1)

dxdy+y1y2*x=y1y2 which is of form

dxdy+Px=Q&P=y1y2&Q=y1y2pdx=y1y2dx=122y1y2dx

=12log|1y2|=log[1y2]12

I.F=ePdx=elog[1y2]12=[1y2]12

 option (D ) is correct.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E is

xdydxy=2x2dydx1xy=2x

Which is of form dydx+Py=Q

So,  P=1x

I.E=ePdx=e1xdx=elogx=elogx1=x1=1x

 Option (c) is correct

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We know that slope of tangent to the curve is dydx

x+y=dydx+5

dydxy=x5 Which has form dydx+Px=Q

where,P=1&Q=x5

I.F=ePdx=e1dx=ex

Thus the solution has the form

yex=(x5)exdx+c=xexdx5exdx+c=yex=I+5ex+cwhere,I=xexdx=xexdxddxxexdxdx=xex+exdx=xexex

yex=xexex+5ex+c=yex=xex+4ex+c=y=x+4+cex=y+x=4+cex

Given, the curve passes through (0,2) so y=2 when x=0

2+0=4ce024=cc=2

 The particular solution is

y+x=42ex

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We know the slope of tangent to curve is dydx .

 dydx=x+y

=dydxy=x which has form dydx+Py=Q

So, P=1&Q=x

I.F=ePdx=edx=ex

Thus the solution is of the form .

y*ex=x.exdx+c=xexdxdxdxexdxdx+c=xex+exdx+c=yex=xexex+c=y=x1+cex=y+x+1=cex

Given, the curve passes through origin (0,0) i.e, y=0,when,x=0

0+0+1=ce0=c=1

 Thus, equation of the curve is

y+x+1=ex

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx3ycotx=sin2x

dydx3cotx.y=sin2x Which is of form dydx+Py=Q

So, P=3cotx&Q=sin2x

I.F=ePdx=e3cotxdx=e3cotxdx=e3log|cotxdx|=elog(sin)3=1sin3x

Thus the solution is of the form.

y*1sin3x=sin2x.1sin3xdx+c=2sinxcosxsin3xdx+c{?sin2x=2sinxcosx}=2cosecxcotxdx+c=2cosecx+c=ysin3x=2sinx+c=2y=2sin2x+csin3x

Given, y=2,when,x=π2

2=2sin212+csin3π2=2=2+c=e=2+2=4

 The particular solution is, y=2sin2x+4sin3x

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

(1+x2)dydx+2xy=11+x2

Which is of form 

dydx+Px=Q

So, P=2x1+x2&Q=1(1+x2)2

Pdx=2x1+x2dx=log|1+x2|

I.F=ePdx=elog|1+x2|=1+x2

Thus the solution is if form,

y*(I.F)=Q.(I.F)dx+c

y(1+x2)=1(1+x2)2*(1+x2)dx+c=1(1+x2)dx+cy*(1+x2)=tan1x+c

Given, y=0,when,x=1

0=tan11+cc=tan11=π4

 The particular solution is

y(1+x2)=tan1xπ4

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.