Ncert Solutions Maths class 12th

Get insights from 2.5k questions on Ncert Solutions Maths class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 12th

Follow Ask Question
2.5k

Questions

0

Discussions

16

Active Users

65

Followers

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

cos2xdydx+y=tanx=dydx+1cos2xy=tanxcos2x

=dydx+sec2xy=sec2xtanx Which is of form dydx+Py=Q

So, P=sec2x&Q=sec2xtanx

I.F=ePdx=esec2dx=etanx

Thus, the general solution is of the form.

y.etanx=sec2xtanx.etanxdx+c

Let, tanx=t=sec2xdx=dt

=yet=t.etdt+c=tetdtddttetdt.dt+c=tetetdt+c=tetet+c=et(t1)+c

yetanx=etanx(tanx1)+cy=(tanx1)+cetanx

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

136. Given, sin(A+B)=sinAcosB+cosAsinB

Differentiating w r t. 'x' we get,

ddxsin(A+B)=ddx(sinAcosB+cosAsinB)

cos(A+B)ddx(A+B)=sinAddxcosB+cosBddxsinA+cosAddxsinB+sinBddxcosA

cos(A+B)(dAdx+dBdx)=sinAsinBdBdx+cosBcosAdAdx+cosAcosBdBdxsinAsinBdAdx

cos(A+B)(dAdx+dBdt)=cosAcosB(dAdx+dBdx)sinAsinB(dAdx+dBdx)

=(cosAcosBsinAsinB)(dAdx+dBdx).

cos(A+B)=cosAcosBsinAsinB.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E.is

dydx+(secx)y=tanx Which is in the form dydx+Py=Q

So, P=secx&Q=tanx

 I.F=ePdx=esecxdx=elog|secx+tanx|=secx+tanx

Thus, the general solution is ,

y*I.F=Q*I.Fdx+c=y*(secx+tanx)=tanx(secx+tanx)dx+c

=(tanxsecx+tan2x)dx+c=(tanxsecx+sec21)dx+c=sec+tanxx+c

=(secx+tanx)y=secx+tanxx+c{?sec2x=tan2x+1}

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+yx=x2 Which is in the form dydx+Py=Q

So,  P=1x=&Q=x2

I.F=ePdx=e12dx=elogx=x {? elogx=x}

Thus, the general solution is

y*I.F=Q*I.Fdx+cy.x=x2.xdx+c=xy=x3dx+c=xy=x44+c

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

135. Given, f(x)=|x|3={x3 if x0x3 if x<0

For x0,f(x)=|x|3=x3

and f(x)=3x2f(x)=6x

For x<0,f(x)=|x|3=(x)3=x3.

so, f(x)=3x2f(x)=6x

Hence, f(x)={6x, if x06x, if x<0

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Given, D.E. is

dydx+3y=e2x which is of the form

dydx+Py=Q

Where P=3&Q=e2x

So, I.F =ePdx=e3dx=e3x

So, the solution is =y*I.F=e2x(I.F).dx+c

=y*e3x=e2x.e3xdx+c=e3xy=exdx+c=e3xy=ex+c=y=exe3x+ce3x=y=e2x+ce3x

Is the required general solution.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The given D.E. is

dydx+2y=2sinx which is of form dydx+Px=Q

We have, P = 2

Q=sinx

So, I.F. =ePdx=e2dx=e2x

The solution is y*I.F=Q*(I.F)dx+c

ye2x=sinxe2xdx+c=ye2x=I+c(1)Where,I=sinxe2x=sinxe2x(ddxsinxe2xdx)dx=sinxe2x212[cosxe2xdx]=e2xsinx212[cose2xdx(ddxcosxe2xdx)dx]=e2xsinx212[cosxe2x212(cosx)e2xdx]=e2xsinx2e2xcosx414sinxe2xdx

=I=e2xsinx2e2xcosx4141=I+14I=2e2xsinxe2xcosx4=54I=e2x(2sinxcosx)4=I=e2x(2sinxcosx)5

Hence, equation, (1) becomes,

ye2x=e2x5(2sinxcosx)+c=y=(2sinxcosx)5+ce2x

Is the required solution.

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

134. Given, x=a(cost+tsint) and y=a(sinttcost).

Differentiating w r t. 't' we get,

dxdt=addt(cost+tsint). 

=a(sint+tddtsint+sintdtdt). 

=a(sint+tcost+sint)=atcost

dydt=addt(csinttcost)

=a(costtddtcostcotdtdt)

=a(cost+tsintcost)=atsint

dydx=dy/dtdx/at=atsintatcost=tant

So,   d2ydx2=ddx(tant)=ddt(tant)dtdx. 

=sec2t*dtdx.

=sec2t*1(dx/dt)

=sec2t*1 at cost

=sec3tat

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

133.  Given, cosy=xcos(a+y).

x=cosycos(a+y)

Differentiating w r t 'y' we get,

dxdy=ddy(cosycos(a+y)).

=cos(a+y)ddycosycosyddycos(a+y)cos2(a+y).

=cos(a+y)(siny)cosy(sin(a+y))cos2(a+y).

=cos(a+y)siny+sin(a+y)cosycos2(a+y)

=sin(a+y)cosycos(a+y)siny.cos2(a+y)

dxdy=sin(a+yy)cos2(a+y){?sin(AB)=sinAcosBcosAsinB}

So, dydx=cos2(a+y)sina

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

132. Given, (xa)2+(yb)2=c2.

Differentiating w r t 'x' we get

ddx(xa)2+ddx(yb)2=ddxc2

2(xa)+2(yb)dydx=0

dydx=2(xa)2(yb)=(xa)(yb)

Again, d2ydx2={(yb)ddx(xa)(xa)ddx(yb)(yb)2}

={(yb)(xa)dydx(yb)2}

={(yb)+(xa)(xa)(yb)(yb)2}

={(yb)2+(xa)2(yb)3}

=c2(yb)3{?(xa)2+(yb)2=c2}

Then, L.H.S = {1+(dydx)2}3/2d2ydx2={1+(xa)2(yb)2}3/2c2(yb)2

={(yb)2+(xa)2}3/2(yb)3*(yb)3c2

=c2*3/2c2=c3c2=c Where c is a constant and is independent of a and b.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.