Relations and Functions
Get insights from 125 questions on Relations and Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Relations and Functions
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
4 months agoContributor-Level 10
It is given that is defined as
Suppose , where
Since x is positive and y is negative:
But, 2xy is negative.
Then, .
Thus, the case of x being positive and y being negative can be ruled out.
Under a similar argument, x being negative and y being positive can also be ruled out
x and y have to be either positive or negative.
When x and y are both positive, we have:
When x and y are both negative, we have:
is one-one.
Now, let such that .
If x is negative, then there exists such that
If x is positive, then there exists such that
is onto.
Hence, f is
New answer posted
4 months agoContributor-Level 10
It is given that:
is defined as
One-one:
Let,
It can be observed that if n is odd and m is even, then we will have n-1=m+1.
However, the possibility of n being even and m being odd can also be ignored under a similar argument.
Both n and m must be either odd or even.
Now, if both n and m are odd, then we have:
Again, if both n and m are even, then we have:
is one-one.
It is clear that any odd number 2r+1 in co-domain N is the image of 2r in domain N and any even 2r in co-domain N is the image of 2r+1 in domain N.
is onto.
Hence, f is an invertible function.
Let us define as:
Now, when n is odd:
And, when
New answer posted
4 months agoContributor-Level 10
It is given that is defined as
One-one:
is a one-one function.
Onto:
Therefore, for any ,there exists
Such that
is onto.
Therefore, f is one-one and onto.
Thus, f is an invertible function.
Let us define as
Now, we have
Hence, the required function is defined as
New answer posted
4 months agoContributor-Level 10
On N, the operation * is defined as a * b = a3 + b3.
For, a, b, ∈ N, we have:
a * b = a3 + b3 = b3 + a3 = b * a [Addition is commutative in N]
Therefore, the operation * is commutative.
It can be observed that:
(1*2)*3 = (13+23)*3 = 9 * 3 = 93 + 33 = 729 + 27 = 756
Also, 1* (2*3) = 1* (23 +33) = 1* (8 +27) = 1 * 35
= 13 +353 = 1 + (35)3 = 1 + 42875 = 42876.
∴ (1 * 2) * 3 ≠ 1 * (2 * 3) ; where 1, 2, 3 ∈ N
Therefore, the operation * is not associative.
Hence, the operation * is commutative, but not associative. Thus, the correct answer is B.
New answer posted
4 months agoContributor-Level 10
(i) Define an operation * on N as:
a * b = a + b a, b ∈ N
Then, in particular, for b = a = 3, we have:
3 * 3 = 3 + 3 = 6 ≠ 3
Therefore, statement (i) is false.
(ii) R.H.S. = (c * b) * a
= (b * c) * a [* is commutative]
= a * (b * c) [Again, as * is commutative]
= L.H.S.
∴ a * (b * c) = (c * b) * a
Therefore, statement (ii) is true.
New answer posted
4 months agoContributor-Level 10
A = N * N
* is a binary operation on A and is defined by:
(a, b) * (c, d) = (a + c, b + d)
Let (a, b), (c, d) ∈ A
Then, a, b, c, d ∈ N
We have:
(a, b) * (c, d) = (a + c, b + d)
(c, d) * (a, b) = (c + a, d + b) = (a + c, b + d)
[Addition is commutative in the set of natural numbers]
∴(a, b) * (c, d) = (c, d) * (a, b)
Therefore, the operation * is commutative.
Now, let (a, b), (c, d), (e, f) ∈A
Then, a, b, c, d, e, f ∈ N
We have:
Therefore, the operation* is associative.
An element will be an identity element for the operation* if
which is not true for any element in A.
Therefore, the operation* does not have any identity
New answer posted
4 months agoContributor-Level 10
Let the identity be I.
An element will be the identity element for the operation* if
We are given
Similarly, it can be checked for , we get e=4. Thus, e=4 is the identity
New answer posted
4 months agoContributor-Level 10
(i) On Q the operation* is defined as a*b=a-b.
It can be observed that:
Thus, the operation* is not commutative.
It can also be observed that:
Thus, the operation* is not associative.
(ii) On Q the operation* is defined as a*b=a2+b.
For , we have:
Thus, the operation* is commutative.
It can be observed that:
Thus, the operation* is not commutative.
(iii) On Q the operation* is defined as a*b=a+ab.
It can be observed that:
Thus, the operation* is not commutative.
It can also be observed that:
Thus, the operation* is not associative.
(iv) On Q the operation* is defined as a*b=(a-b)2
For , we have:
Thus, the operation* is commutative
New answer posted
4 months agoContributor-Level 10
The binary operation * on N is defined as:
a * b = H.C.F. of a and b
It is known that:
H.C.F. of a and b = H.C.F. of b and a & mn For E; a, b ∈ N.
∴a * b = b * a
Thus, the operation * is commutative.
For a, b, c ∈ N, we have:
(a * b)* c = (H.C.F. of a and b) * c = H.C.F. of a, b, and c
a * (b * c)= a * (H.C.F. of b and c) = H.C.F. of a, b, and c
∴ (a * b) * c = a * (b * c)
Thus, the operation * is associative.
Now, an element e ∈ N will be the identity for the operation * if a * e = a = e* a ∈ a ∈ N.
But this relation is not true for any a ∈ N.
Thus, the operation * does not have any identity in N.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers