Relations and Functions

Get insights from 125 questions on Relations and Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Relations and Functions

Follow Ask Question
125

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

f(1)=a,f(2)b,and,f(3)=c

If we define g:{a,b,c}{1,2,3}as,g(a)=1,g(b)=2,g(c)=3, then we have:

  (fog)(a)=f(g(a))=f(1)=a(fog)(b)=f(g(b))=f(2)=b(fog)(c)=f(g(c))=f(3)=cAnd(gof)(1)=g(f(1))=f(a)=1(gof)(2)=g(f(2))=f(b)=2(gof)(3)=g(f(3))=f(c)=3gof=IXand,fog=IYWhere,X={1,2,3},and,Y={a,b,c}.

Thus, the inverse of f exists and f1=g.

f1:{a,b,c}{1,2,3} is given by,

f1(a)=1,f1(b)=2,f1(c)=3

Let us now find the inverse of f1 i.e., find the inverse of g.

If we define h:{1,2,3}{a,b,c}as

h(1)=a,h(2)=b,h(3)=c , then we have

(goh)(1)=g(h(1))=g(a)=1(goh)(2)=g(h(2))=g(b)=2(goh)(3)=g(h(3))=g(c)=3And(hog)(a)=h(g(a))=h(1)=a(hog)(b)=h(g(b))=h(2)=b(hog)(c)=h(g(c))=h(3)=cgoh=IXand,hog=IYWhere,X={1,2,3},and,Y={a,b,c}.

Thus, the inverse of g exists and g1=h(f1)1=h.

It can be noted that h=f.

Hence, (f1)1=f.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Let f:XY be an invertible function.

Also, suppose f has two inverses (say g1 and g2 ).

Then, for all y ∈ Y, we have:

fog1 (y)=Iy (y)=fog2 (y)f (g1 (y))=f (g2 (y))  [f is invertible => f is one-one]

g1=g2  [g is one-one]

Hence, f has a unique inverse.

New answer posted

4 months ago

0 Follower 17 Views

V
Vishal Baghel

Contributor-Level 10

f:R+ [4, ) is given as f (x)=x2+4 .

One-one:

Let, f (x)=f (y).x2+4=y2+4x2=y2x=y [as, x=yR]

f is a one-one function.

New answer posted

4 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

f:RR is given by,

f(x)=4x+3Oneone:Let,f(x)=f(y).4x+3=4y+34x=4yx=y

 f is a one-one function.

Onto:

For,yR,let,y=4x+3.x=y34R

Therefore, for any yR , there exists x=y34R such that

f(x)=f(y34)=4(y34)+3=y

 f is onto.

Thus, f is one-one and onto and therefore, f1 exists.

Let us define g:RR by g(x)=y34

Now,(gof)(x)=g(f(x))=g(4x+3)=(4x+3)34=x(fog)(y)=f(g(y))=f(y34)=4(y34)+3=y3+3=ygof=fog=IR

Hence, f is invertible and the inverse of f is given by

f1=g(y)=y34

New answer posted

4 months ago

0 Follower 33 Views

V
Vishal Baghel

Contributor-Level 10

f:[1,1]R is given as f(x)=xx+2

Let,f(x)=f(y).xx+2=yy+2xy+2x=xy+2y2x=2yx=y

 f is a one-one function.

It is clear that f:[1,1] Range f is onto.

 f:[1,1] Range f is one-one onto and therefore, the inverse of the function:

f:[1,1] Range f exists.

Let g: Range f[1,1] be the inverse of f.

Let y be an arbitrary element of range f.

Since f:[1,1] Range f is onto, we have:

y=xx+2xy+2y=xx(1y)=2yx=2y1y,y1g(y)=2y1y,y1Now,(gof)(x)=g(f(x))=g(xx+2)=2(xx+2)1xx+2=2xx+2x=2x2=x(fog)(y)=f(g(y))=f(2y1y)=2y(1y)(2y1y)+2=2y2y+22y=2y2=ygof=I1,1,and,fogIRange,ff1=gf1(y)=2y1y,y1

New answer posted

4 months ago

0 Follower 13 Views

V
Vishal Baghel

Contributor-Level 10

(i) f: {1, 2, 3, 4} → {10} defined as:

f = { (1, 10), (2, 10), (3, 10), (4, 10)}

From the given definition of f, we can see that f is a many one function as: f (1) = f (2) = f (3) = f (4) = 10

∴f is not one-one.

Hence, function f does not have an inverse.

(ii) g: {5, 6, 7, 8} → {1, 2, 3, 4} defined as:

g = { (5, 4), (6, 3), (7, 4), (8, 2)}

From the given definition of g, it is seen that g is a many one function as: g (5) = g (7) = 4.

∴g is not one-one,  

Hence, function g does not have an inverse.

(iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} defined as:

h = { (2, 7), (3, 9), (4, 11), (5, 13)}

It is seen that

...more

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

It is given that f (x)=4x+36x4, x23

(fof) (x)=f (f (x))=f (4x+36x4)=4 (4x+36x4)+36 (4x+36x4)4=16x+12+18x1224x+1824x+16=34x34=x

Therefore fof (x)=x for all x23

fof=1

Hence, the given function f is invertible and the inverse of f is itself.

New question posted

4 months ago

0 Follower 4 Views

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

To prove:

(f+g)oh=foh+gohconsider:((f+g)oh)(x)=(f+g)(h(x))=f(h(x))+g(h(x))=(foh)(x)+(goh)(x)={(foh)+(goh)}(x)((f+g)oh)(x)={(foh)+(goh)}(x),xRHence,(f+g)oh=foh+goh

To prove

(f.g)oh=(foh).(goh)Consider((f.g)oh)(x)=(f.g)(h(x))=f(h(x)).g(h(x))=(foh)(x).(goh)(x)={(foh).(goh)}(x)((f.g)oh)(x)={(foh).(goh)}(x),xRHence,(f.g)oh=(foh).(goh)

New answer posted

4 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

The functions f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} are defined as

f = { (1, 2), (3, 5), (4, 1)} and g = { (1, 3), (2, 3), (5, 1)}.

gof (1) = g (f (1) = g (2) = 3 [f (1) = 2 and g (2) = 3]

gof (3) = g (f (3) = g (5) = 1 [f (3) = 5 and g (5) = 1]

gof (4) = g (f (4) = g (1) = 3 [f (4) = 1 and g (1) = 3]

 gof = { (1, 3), (3, 1), (4, 3)}

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.