Three Dimensional Geometry

Get insights from 212 questions on Three Dimensional Geometry, answered by students, alumni, and experts. You may also ask and answer any question you like about Three Dimensional Geometry

Follow Ask Question
212

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

7 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

2x+yz=5 ......... (1)

Dividing both sides of equation (1) by 5, we obtain

25x+y5z5=1x52+y5+z5=1.......... (2)

It is known that the equation of a plane in intercept form is xa+yb+zc=1 , where a,  b,  c are the intercepts cut off by the plane at x,  y, and z axes respectively.

Therefore, for the given equation,

a=52, b=5andc=5

Thus, the intercepts cut off by the plane are 52 , 5and5.

New answer posted

7 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

We know that through three collinear points A,B,C i.e., through a straight line, we can pass an infinite number of planes.

(a) The given points are A(1,1,1),B(6,4,5),andC(4,2,3).

|111645423|=(1210)(1820)(12+16)

=2+24=0

Since A,B,C are collinear points, there will be infinite number of planes passing through the given points.

(b) The given points are A(1,1,0),B(1,2,1),andC(2,2,1).

|110121221|=(22)(2+2)=80

Therefore, a plane will pass through the points A, B, and C.

It is known that the equation of the plane through the points,  (x1, y1, z1),(x2, y2, z2)&(x3, y3, z3) , is

|xx1yy1zz1x2x1y2y1z2z1x3x1y3y1z3z1|=0|x1y1z011311|=0(2)(x1)3(y1)+3z=02x3y+3z+2+3=02x3y+3z=52x+3y3z=5

This is the Cartesian equation of the required plane.

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(a) The position vector of point (1,0,2) is  a=i^2k^

The normal vector N perpendicular to the plane is  N=i^+j^k^

The vector equation of the plane is given by,  (ra).N=0

[r(i^2k^)].(i^+j^k^)=0.........(1)

r is the position vector of any point (x, y, z) in the plane.

r=xi^+yj^+zk^

Therefore, equation (1) becomes

[(xi^+yj^+zk^)(i^2k^)].(i^+j^k^)=0[(x1)i^+yj^+(z+2)k^].(i^+j^k^)=0(x1)+y(z+2)=0x+yz3=0x+yz=3

This is the Cartesian equation of the required plane.

(b) The position vector of the point (1,4,6) is  a=i^+4j^+6k^

The normal vector  N perpendicular to the plane is  N=i^2j^+k^

The vector equation of the plane is given by,  (ra).N=0

[r(i^+4j^+6k^)].(i^2j^+k^)=0.........(1)

r is the position vector of any point P(x, y, z) in the plane.

r=xi^+yj^+zk^

Therefore, equation (1) becomes

[(xi^+yj^+zk^)(i^+4j^+6k^)].(i^2j^+k^)=0[(x1)i^+(y4)j^+(z6)k^].(i^2j^+k^)=0(x1)+2(y4)+(z6)=0x2y+z+1=0

This is the Car

...more

New answer posted

7 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(a) Let the coordinates of the foot of perpendicular P from the origin to the plane be  (x1,  y1,  z1).

2x + 3y + 4z  12 = 0

2x + 3y + 4z = 12   (1)

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) It is given that equation of the plane is

r.(i^+j^k^)=2

For any arbitrary point P(x, y, z) on the plane, position vector  r I s given by,  r=xi^+yj^zk^

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(i^+j^k^)=2

x+yz=2

This is the Cartesian equation of the plane.

(b)  r.(2i^+3j^4k^)=1

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(2i^+3j^4k^)=1

2x+3y4z=1

This is the Cartesian equation of the plane.

(c)  r.[(s2t)i^+(3t)j^+(2s+t)k^]=15

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value

...more

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) It is given that equation of the plane is

r.(i^+j^k^)=2

For any arbitrary point P(x, y, z) on the plane, position vector  r I s given by,  r=xi^+yj^zk^

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(i^+j^k^)=2

x+yz=2

This is the Cartesian equation of the plane.

(b)  r.(2i^+3j^4k^)=1

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(2i^+3j^4k^)=1

2x+3y4z=1

This is the Cartesian equation of the plane.

(c)  r.[(s2t)i^+(3t)j^+(2s+t)k^]=15

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value

...more

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) The equation of the plane is  z =2or0x +0y + z =2..........(1)

The direction ratios of normal are 0,0,and1.

 +02 +12 =1

Dividing both sides of equation (1) by 1, we obtain

0.x+0.y+1.z=2

This is of the form  lx + my + nz = d , where l, m, n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

Therefore, the direction cosines are 0, 0, and 1 and the distance of the plane from the origin is 2 units.

(b)  x + y + z =1..........(1)

The direction ratios of normal are 1, 1, and 1.

+(1)²+(1)²=

Dividing both sides of equation (1) by  , we obtain

1x+1y+1z=1.........(2)

This equation is of the form  lx + my + nz = d , where l, m, n 

...more

New answer posted

7 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

r=(1t)i^+(t2)j^+(32t)k^r=i^ti^+tj^2j^+3k^2tk^r=i^2j^+3k^+t(i^+j^2k^)(1)

r=(s+1)i^+(2s1)j^(2s+1)k^r=si^+i^+2sj^j^2sk^k^r=i^j^k^+s(i^+2j^2k^)(2)

Here,   

    

Hence, the shortage distance between the line is given by

d=|(b1*b2).(a2a1)|b1*b2||=8

New answer posted

7 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

r=(i^+2j^+3k^)+λ(i^3j^+2k^)and(1)r=4i^+5j^+6k^+μ(2i^+3j^+k^)(2)

Here, comparing (1) and (2) with r=a1+λb1 and r=a2+μb2 , we have

a1=i^+2j^+3k^,b1=i^3j^+2k^a2=4i^+5j^+6k^,b2=2i^+3j^+k^

Therefore,
              a 2 a 1 = 3 i ^ + 3 j ^ + 3 k ^ b 1 * b 2 = = i ^ ( 3 6 ) j ^ ( 1 4 ) + k ^ ( 3 + 6 ) = 9 i ^ + 3 j ^ + 9 k ^ | b 1 * b 2 | = = = = 3

New answer posted

7 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

x+17=y+16=z+11x31=y52=z71

Shortest distance between two lines is given by,

given equation we have

x1=1,y1=1,z1=1a1=7,b1=6,c1=1x2=3,y2=5,z2=7a2=1,b2=2,c2=1

Then,

=4(6+2)6(71)+8(14+6)=163664=116

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 66k Colleges
  • 1.2k Exams
  • 681k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.