Three Dimensional Geometry

Get insights from 212 questions on Three Dimensional Geometry, answered by students, alumni, and experts. You may also ask and answer any question you like about Three Dimensional Geometry

Follow Ask Question
212

Questions

0

Discussions

10

Active Users

0

Followers

New question posted

a month ago

0 Follower 2 Views

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

The equation of the plane passing through the line of intersection is:
(2x - 7y + 4z - 3) + λ (3x - 5y + 4z + 11) = 0.
The plane passes through the point (-2, 1, 3).
(2 (-2) - 7 (1) + 4 (3) - 3) + λ (3 (-2) - 5 (1) + 4 (3) + 11) = 0
(-4 - 7 + 12 - 3) + λ (-6 - 5 + 12 + 11) = 0
(-2) + λ (12) = 0 ⇒ 12λ = 2 ⇒ λ = 1/6.
Substitute λ back into the equation:
(2x - 7y + 4z - 3) + (1/6) (3x - 5y + 4z + 11) = 0
Multiply by 6:
6 (2x - 7y + 4z - 3) + (3x - 5y + 4z + 11) = 0
12x - 42y + 24z - 18 + 3x - 5y + 4z + 11 = 0
15x - 47y + 28z - 7 = 0.
This is the equation ax + by + cz - 7 = 0.
So, a=15, b=-47, c=28.
We need to find the value of 2a + b

...more

New answer posted

a month ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Let the equation of the plane passing through (1, 2, 3) be:
a (x - 1) + b (y - 2) + c (z - 3) = 0
The plane contains the y-axis, which has direction ratios (0, 1, 0).
Therefore, the normal to the plane must be perpendicular to the y-axis.
a (0) + b (1) + c (0) = 0 ⇒ b = 0
The equation becomes: a (x - 1) + c (z - 3) = 0
ax + cz = a + 3c
The plane also passes through the origin (0,0,0) since it contains the y-axis.
a (0) + c (0) = a + 3c ⇒ a + 3c = 0 ⇒ a = -3c
Substitute a = -3c into the plane equation:
-3c (x - 1) + c (z - 3) = 0
-3 (x - 1) + (z - 3) = 0
-3x + 3 + z - 3 = 0
-3x + z = 0 ⇒ 3x - z = 0

New answer posted

a month ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

a month ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

Let A (α, 0,0), B (0, β, 0), C (0,0, γ), then the centroid is G (α/3, β/3, γ/3) = (1,1,2).
α = 3, β = 3, γ = 6
∴ Equation of plane is x/α + y/β + z/γ = 1
⇒ x/3 + y/3 + z/6 = 1
⇒ 2x + 2y + z = 6
∴ Required line passing through G (1,1,2) and normal to the plane is (x-1)/2 = (y-1)/2 = (z-2)/1.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Equation PQ
(x-1)/2 = (y+2)/3 = (z-3)/ (-6) = λ
Let Q = (2λ + 1, 3λ − 2, −6λ + 3)
Q lies on x - y + z = 5
⇒ (2λ + 1) − (3λ − 2) + (−6λ + 3) = 5
⇒ λ = -1/7
Q = (5/7, -17/7, 15/7)


∴ PQ = √ (2/7)² + (3/7)² + (6/7)²)

New question posted

a month ago

0 Follower 2 Views

New question posted

a month ago

0 Follower 11 Views

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.