Atoms
Get insights from 99 questions on Atoms, answered by students, alumni, and experts. You may also ask and answer any question you like about Atoms
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
4 months agoContributor-Level 10
This is a Long Answer Type Questions as classified in NCERT Exemplar
Explanation- total energy of electron
E=
The frequency hv=
=
= =
=
When me<
after solving we get 2.714
New answer posted
4 months agoContributor-Level 10
This is a Long Answer Type Questions as classified in NCERT Exemplar
Explanation- as we know total energy in stationary orbit is
En=- where sign have usual meaning.
According to bohr third postulate h
-
Where is the reduced mass
Reduced mass for H=H=;me(1-me/M)
D= D; me(1-me/2M)
=me(1-me/2M)(1+me/2M)
If for hydrogen deuterium, the wavelength
= (1+ )-1= (1- )
so lines emitted are 1217.7A0,1027.7A0,974.04A0
New answer posted
5 months agoContributor-Level 10
12.17 Mass of a negatively charged muon, = 207
According to Bohr's model
Bohr radius,
And, energy of a ground state electronic hydrogen atom
Also, the energy of a ground state muonic hydrogen atom,
We have the value of the first Bohr orbit, = 0.53 Å = 0.53 m
Let be the radius of muonic hydrogen atom
At equilibrium, we can write the relation as:
=
207 =
= =2.56 m
Hence, the value of the first Bohr radius of a muonic hydrogen atom is 2.56 m
We have = -13.6 eV
Take the ratio of these energies as:
= =
= 207 = 207 = -2.81 keV
Hence, the ground state energy of a muonic hydrogen atom is -2.81 keV.
New answer posted
5 months agoContributor-Level 10
12.16 We never speak of quantization of orbits of planets around the Sun because the angular momentum associated with planetary motion is largely relative to the value of Planck's constant (h).
The angular momentum of the Earth in its orbit is of the order of h. This leads to a very high value of quantum levels n of the order of . For large values of n, successive energies and angular momentum are relatively very small. Hence, the quantum levels for planetary motion are considered continuous.
New answer posted
5 months agoContributor-Level 10
12.15 Total energy of the electron, E = -3.4 eV
Kinetic energy of the electron is equal to the negative of the total energy
K = -E = 3.4 eV
Potential energy (U) of the electron is equal to twice the negative of kinetic energy
U = -2K = -6.8 eV
The potential energy of a system depends on the reference point taken. Here, the potential energy of the reference point is taken as zero. If the reference point is changed, then the value of the potential energy of the system also changes. Since total energy is the sum of kinetic and potential energies, total energy of the system will also change.
New answer posted
5 months agoContributor-Level 10
12.14 Charge of an electron, e = 1.6 C
Mass of an electron, = 9.1 kg
Speed of light, c = 3 m/s
Let us take a quantity involving the given quantities as
Where
= permittivity of free space and
= 9.1 N
Hence, = 9.1 = 2.844 m
Hence, the numerical value of the taken quantity is much smaller than the typical size of an atom.
Charge of an electron, e = 1.6 C
Mass of an electron, = 9.1 kg
Planck's constant, h = 6.623 Js
Let us take a quantity involving the given quantities as
Where
= permittivity of free space and
= 9.1 N
The numerical value of the taken quantity will be
= = = 5.24 m
Hence, the value of the qua
New answer posted
5 months agoContributor-Level 10
12.13 It is given that a hydrogen atom de-excites from an upper level (n) to a lower level (n-1)
We have the relation for energy ( ) of radiation at level n as:
= h = ………………(i)
Where,
= Frequency of radiation at level n
h = Planck's constant
m = mass of hydrogen atom
e = charge of an electron
= Permittivity of free space
Now, the relation for energy ( ) of radiation at level (n-1) is given as:
= h = ………………(ii)
Where,
= Frequency of radiation at level (n-1)
Energy (E) released as a result of de-excitation:
E =
= …………………………(iii)
where,
= Frequency of radiation emitted
Putting valu
New answer posted
5 months agoContributor-Level 10
12.12 Radius of the first Bohr orbit is given by the relation:
= ………………(1)
Where,
Permittivity of free space
h = Planck's constant = 6.626 Js
= mass of electron = 9.1 kg
e = Charge of electron = 1.9 C
= mass of a proton = 1.67 kg
r = distance between the electron and proton
Coulomb attraction between an electron and a proton is given as:
= ……………….(2)
Gravitational force of attraction between an electron and a proton is given as:
= ……………….(3)
Where, G = Gravitational constant = 6.67 N /
If the electrostatic (Coulomb) force and the gravitational force between an electron and a proton a
New answer posted
5 months agoContributor-Level 10
12.11 About the same - The average angle of deflection -particles by a thin gold foil predicted by Thomson's model is about the same size as predicted by Rutherford's model. This is because the average angle was taken in both models.
Much less - The probability of scattering of -particles at angles greater than 90 predicted by Thomson's model is much less than that predicted by Rutherford's model.
Scattering is mainly due to single collisions. The chances of a single collision increases linearly with the number of target atoms. Since the number of target atoms increase with an increase in thickness, the collision probability depend
New answer posted
5 months agoContributor-Level 10
12.10 Radius of the Earth's orbit around the Sun, r = 1.5 m
Orbital speed of Earth, v = 3 m/s
Mass of the Earth, m = 6 kg
According to Bohr's model, angular momentum is given as:
= , where
h = Planck's constant = 6.626 Js
n = Quantum number
Hence, n= = = 2.56
Hence, the quantum number that characterizes earth's revolution is 2.6
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 687k Reviews
- 1800k Answers