Conic Sections
Get insights from 199 questions on Conic Sections, answered by students, alumni, and experts. You may also ask and answer any question you like about Conic Sections
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
a month agoContributor-Level 10
If the orthocenter and circumcenter of a triangle both lie on the y-axis, the centroid also lies on the y-axis.
The x-coordinate of the centroid is (x1 + x2 + x3) / 3. If the vertices are (cos α, sin α), (cos β, sin β), (cos γ, sin γ), then the x-coordinate of the centroid is (cos α + cos β + cos γ) / 3.
Since the centroid lies on the y-axis, its x-coordinate is 0.
cos α + cos β + cos γ = 0
Using the identity: If a + b + c = 0, then a^3 + b^3 + c^3 = 3abc.
Let a = cos α, b = cos β, c = cos γ.
Then, cos^3 α + cos^3 β + cos^3 γ = 3 * cos α * cos β * cos γ.
We need to evaluate the expression:
(cos 3α + cos 3β + cos 3γ) / (
New answer posted
a month agoContributor-Level 10
P(O at even place) = 1/2, P('O' at odd place) = 1/3
P(1 at even place) = 1 - 1/2 = 1/2
P(1 at odd place) = 1 - 1/3 = 2/3
The probability that 10 is followed by 01 is given by a sequence of probabilities, which seems to represent a specific arrangement or transition. The calculation is:
P(10 is followed by 01) = (2/3) * (1/2) * (1/3) * (1/2) * (1/2) * (1/3) * (1/2) * (2/3) = 1/18 + 1/18 = 1/9.
The calculation seems incomplete or context is missing.
New answer posted
a month agoContributor-Level 10
- Given vectors OP = xi + yj - k and OQ = -i + 2j + 3xk.
- PQ = OQ - OP = (-1 - x)i + (2 - y)j + (3x + 1)k
- Given |PQ| = √20, so |PQ|² = 20.
(-1 - x)² + (2 - y)² + (3x + 1)² = 20
(1 + x)² + (2 - y)² + (3x + 1)² = 20 .(i) - Given OP ⊥ OQ, so OP · OQ = 0.
(x)(-1) + (y)(2) + (-1)(3x) = 0
-x + 2y - 3x = 0 ⇒ -4x + 2y = 0 ⇒ y = 2x .(ii)
Substitute (ii) into (i):
(1 + x)² + (2 - 2x)² + (3x + 1)² = 20
1 + 2x + x² + 4 - 8x + 4x² + 9x² + 6x + 1 = 20
14x² = 14 ⇒ x² = 1 ⇒ x = ±1.
When x = 1, y = 2. When x = -1, y = -2.
So, (x, y) can be (1, 2) or (-1, -2).- Given that OR, OP, and OQ are coplanar, their scalar triple product is 0: [OR OP OQ]
- Given OP ⊥ OQ, so OP · OQ = 0.
New answer posted
a month agoContributor-Level 10
Evaluate the limit:
L = lim (x→0) [sin? ¹ (x) - tan? ¹ (x)] / 3x³
Using Taylor series expansions around x=0:
sin? ¹ (x) = x + x³/6 + O (x? )
tan? ¹ (x) = x - x³/3 + O (x? )
L = lim (x→0) [ (x + x³/6) - (x - x³/3) ] / 3x³
L = lim (x→0) [ x³/6 + x³/3 ] / 3x³
L = lim (x→0) [ (1/6 + 1/3)x³ ] / 3x³
L = (1/2) / 3 = 1/6
The solution shows 3L = 1/2, which is correct. And 6L = 1, also correct.
The final line 6L+1=2 implies 6L=1, confirming the result.
New answer posted
a month agoContributor-Level 10
Given the family of parabolas y² = 4a (x+a).
Differentiate with respect to x:
2y (dy/dx) = 4a
a = (y/2) (dy/dx)
Substitute a back into the original equation:
y² = 4 * (y/2) (dy/dx) * [x + (y/2) (dy/dx)]
y² = 2y (dy/dx) * [x + (y/2) (dy/dx)]
y = 2 (dy/dx) * [x + (y/2) (dy/dx)]
y = 2x (dy/dx) + y (dy/dx)²
y (dy/dx)² + 2x (dy/dx) - y = 0
New question posted
a month agoNew answer posted
a month agoContributor-Level 10
Given equation of tangent is 2x - y + 1 = 0
equation of normal is x + 2y = 12
Solving with x - 2y = 4 we get centre at (6,2) radius = √ (36 + 9) = √45 = 3√5.
New answer posted
a month agoContributor-Level 10
For ellipse x²/16 + y²/9 = 1, a=4, b=3, e = √ (1 - 9/16) = √7/4
A and B are foci then PA + PB = 2a = 2 (4) = 8
New answer posted
a month agoContributor-Level 10
y² = 4x and x² = 4y
any tangent of y² = 4x is y = mx + 1/m
it also tangent for x² = 4y
1/m = -m² ⇒ m = -1
∴ common tangent is y = -x - 1, it also touches x² + y² = c²
∴ 1 = c² ⋅ (1+1) ⇒ c² = 1/2
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers