Maths

Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths

Follow Ask Question
6.5k

Questions

0

Discussions

14

Active Users

0

Followers

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) The position vector of point (1,0,2) is  a=i^2k^

The normal vector N perpendicular to the plane is  N=i^+j^k^

The vector equation of the plane is given by,  (ra).N=0

[r(i^2k^)].(i^+j^k^)=0.........(1)

r is the position vector of any point (x, y, z) in the plane.

r=xi^+yj^+zk^

Therefore, equation (1) becomes

[(xi^+yj^+zk^)(i^2k^)].(i^+j^k^)=0[(x1)i^+yj^+(z+2)k^].(i^+j^k^)=0(x1)+y(z+2)=0x+yz3=0x+yz=3

This is the Cartesian equation of the required plane.

(b) The position vector of the point (1,4,6) is  a=i^+4j^+6k^

The normal vector  N perpendicular to the plane is  N=i^2j^+k^

The vector equation of the plane is given by,  (ra).N=0

[r(i^+4j^+6k^)].(i^2j^+k^)=0.........(1)

r is the position vector of any point P(x, y, z) in the plane.

r=xi^+yj^+zk^

Therefore, equation (1) becomes

[(xi^+yj^+zk^)(i^+4j^+6k^)].(i^2j^+k^)=0[(x1)i^+(y4)j^+(z6)k^].(i^2j^+k^)=0(x1)+2(y4)+(z6)=0x2y+z+1=0

This is the Car

...more

New answer posted

6 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

22.  (i) sin 75°= sin (45°+30°)

Using sin (x + y)= sin x cos y + cos x sin y we can write

sin 75°

= sin 45°cos 30°+ 45° sin 30°

New answer posted

6 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

39. Let f (x) = cos (x3) sin2 (x5).

f' (x) = cos (x3) d d x  sin2 (x5) + sin2 (x5) d d x cos (x3)

= cos (x3) 2sin (x5) d d x  sin (x5) + sin2 (x5) [sin (x3)] d d x x3.

= 2 cos (x3) sin (x5). cos (x5) d d x   (x5) - sin2 (x5) sin (x3). 3x2

= 2. cos (x3) sin (x5) cos (x5). 5 - 3x2sin2 (x5) sin (x3)

= x2 sin (x5). [2x2 cos (x3) cos (x5) - 3 sin (x5) sin x3].

New answer posted

6 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(a) Let the coordinates of the foot of perpendicular P from the origin to the plane be  (x1,  y1,  z1).

2x + 3y + 4z  12 = 0

2x + 3y + 4z = 12   (1)

New answer posted

6 months ago

0 Follower 1 View

P
Payal Gupta

Contributor-Level 10

21. Kindly go through the solution

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) It is given that equation of the plane is

r.(i^+j^k^)=2

For any arbitrary point P(x, y, z) on the plane, position vector  r I s given by,  r=xi^+yj^zk^

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(i^+j^k^)=2

x+yz=2

This is the Cartesian equation of the plane.

(b)  r.(2i^+3j^4k^)=1

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(2i^+3j^4k^)=1

2x+3y4z=1

This is the Cartesian equation of the plane.

(c)  r.[(s2t)i^+(3t)j^+(2s+t)k^]=15

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value

...more

New answer posted

6 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

38. Let f(x) = sin(ax+b)cos(cx+d).

f'(x) = cos(cx+d)ddxsin(ax+b)sin(ax+b)ddxcos(cx+d)cos2(cx+d).

cos(cx+d)cos(ax+b)ddx(ax+b)+sin(ax+b)sin(cx+d)d(x+d)dxcos2(cx+d)

=cos(cx+d)cos(ax+b)·a+sin(ax+b)sin(cx+d)·ccos2(cx+d)

New answer posted

6 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

20. Kindly go through the solution

New answer posted

6 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

37. Kindly go through the solution

New answer posted

6 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(a) It is given that equation of the plane is

r.(i^+j^k^)=2

For any arbitrary point P(x, y, z) on the plane, position vector  r I s given by,  r=xi^+yj^zk^

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(i^+j^k^)=2

x+yz=2

This is the Cartesian equation of the plane.

(b)  r.(2i^+3j^4k^)=1

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value of  r in equation (1), we obtain

(xi^+yj^zk^).(2i^+3j^4k^)=1

2x+3y4z=1

This is the Cartesian equation of the plane.

(c)  r.[(s2t)i^+(3t)j^+(2s+t)k^]=15

For any arbitrary point P(x, y, z) on the plane, position vector  r is given by,  r=(xi^+yj^zk^)

Substituting the value

...more

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.