Maths
Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
2 months agoContributor-Level 10
CD = √ (10+x²)² – (10–x²)² = 2√10|x|
Area
= 1/2 * CD * AB = 1/2 * 2√10|x| (20–2x²)
=> 10 – x² = 2x
3x² = 10
x = k
3k² = 10
New answer posted
2 months agoContributor-Level 10
f (x) = x? – 4x + 1 = 0
f' (x) = 4x³ – 4
= 4 (x–1) (x²+1+x)
=> Two solution
New answer posted
2 months agoContributor-Level 10
lim? (x→7) (18- [1-x])/ ( [x-3a])
exist & a∈I.
= lim? (x→7) (17- [-x])/ ( [x]-3a)
exist
RHL = lim? (x→7? ) (17- [-x])/ ( [x]-3a) = 25/ (7-3a) [a ≠ 7/3]
LHL = lim? (x→7? ) (17- [-x])/ ( [x]-3a) = 24/ (6-3a) [a ≠ 2]
LHL = RHL
25/ (7-3a) = 8/ (2-a)
∴ a = -6
New answer posted
2 months agoContributor-Level 10
dy/dx = (ax-by+a)/ (bx+cy+a)
=> bxdy + cydy + ady = axdx – bydx + adx
cy²/2 + ay – ax²/2 – ax + bxy = k
ax² + ay² + 2ax – 2ay = k
=> x² + y² + 2x – 2y = λ
Short distance of (11,6)
= √12²+5² – 5
= 13 – 5
= 8
New answer posted
2 months agoContributor-Level 10
x = Σ a? = 1/ (1-a); y = Σ b? = 1/ (1-b); z = Σ c? = 1/ (1-c)
Now,
a, b, c → AP
1-a, 1-b, 1-c → AP
1/ (1-a), 1/ (1-b), 1/ (1-c) → HP
x, y, z → HP
New answer posted
2 months agoContributor-Level 10
x + 2y + z = 2
αx + 3y – z = α
–αx + y + 2z = –α
Δ = | (1, 2, 1), (α, 3, -1), (-α, 1, 2) | = 1 (6+1) – 2 (2α–α) + 1 (α+3α) = 7+2α
α = –7/2
New answer posted
2 months agoContributor-Level 10
z? = iz²
Let z = x + iy
x – iy = I (x² – y² + 2xiy)
Case-I
x = 0
–y² = –y
y = 0, 1
Case - II
y = – 1/2
=> x² – 1/4 = 1/2 => x = ±√3/2
Area of polygon
= 1/2 | (0, 1, 1), (√3/2, -1/2, 1), (-√3/2, -1/2, 1) |
= 1/2 | -√3/2 - √3/2 | = 3√3/4
New answer posted
2 months agoContributor-Level 9
(P? ¹AP - I)²
= (P? ¹AP - I) (P? ¹AP - I)
= P? ¹A (PP? ¹)AP - P? ¹AP - P? ¹AP + I
= P? ¹A²P - 2P? ¹AP + I
= P? ¹ (A² - 2A + I)P = P? ¹ (A - I)²P
| (P? ¹AP - I)²| = |P? ¹ (A - I)²P| = |P? ¹| | (A - I)²| |P| = | (A - I)²| = |A - I|²
A - I = [1, 7, w²], [-1, w², 1], [0, -w, -w]
|A - I| = 1 (-w³ + w) - 7 (w) + w² (w) = -w³ + w - 7w + w³ = -6w.
|A - I|² = (-6w)² = 36w².
New answer posted
2 months agoContributor-Level 9
Let A = [a? ]? Sum of diagonal elements of A.A? is Tr (A.A? ) = ∑? ∑? a? ² = 9.
where each a? ∈ {0, 1, 2, 3}.
Case I: One of a? = 3 and rest are 0. (3²=9). There are? C? = 9 ways.
Case II: Two of a? are 2, one is 1, and rest are 0. (2² + 2² + 1² = 9). There are? C? *? C? = 36 * 7 = 252 ways.
Case III: One of a? = 2, five are 1, and rest are 0. (2² + 1²+1²+1²+1²+1² = 9). There are? C? *? C? = 9 * 56 = 504 ways.
Case IV: All nine a? = 1. (1² * 9 = 9). There is 1 way.
Total = 9 + 252 + 504 + 1 = 766.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers

