Ncert Solutions Chemistry Class 12th

Get insights from 2.6k questions on Ncert Solutions Chemistry Class 12th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Chemistry Class 12th

Follow Ask Question
2.6k

Questions

0

Discussions

9

Active Users

79

Followers

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

L e t I = π 4 π 4 l o g | s i n x + c o s x | d x ( i ) = π 4 π 4 l o g | s i n ( π 4 π 4 x ) + c o s ( π 4 π 4 x ) | d x [ Usingabf(x)dx=abf(a+bx)dx ] = π 4 π 4 l o g | s i n ( x ) + c o s x | d x = π 4 π 4 l o g | c o s x s i n x | d x ( i i ) A d d i n g ( i ) a n d ( i i ) 2 I = π 4 π 4 l o g | c o s x + s i n x | d x + π 4 π 4 l o g | c o s x s i n x | d x 2 I = π 4 π 4 l o g | ( c o s x + s i n x ) ( c o s x s i n x ) | d x 2 I = π 4 π 4 l o g | c o s 2 x s i n 2 x | d x 2 I = π 4 π 4 l o g c o s 2 x d x 2 I = 2 0 π 4 l o g c o s 2 x d x [ ? a a f ( x ) d x = 2 0 a f ( x ) d x i f f ( x ) = f ( x ) ] I = π 0 π 4 l o g c o s 2 x d x P u t 2 x = t d x = d t 2 W h e n x = 0 t = 0 ; w h e n x = π 4 t = π 2 I = 1 2 0 π 2 l o g c o s t d t &thi

O n a d d i n g ( i i i ) a n d ( i v ) , w e g e t 2 I = 1 2 0 π 2 ( l o g c o s t + l o g s i n t ) d t 2 I = 1 2 0 π 2 l o g s i n t c o s t d t 2 I = 1 2 0 π 2 l o g 2 s i n t c o s t d t 2 2 I = 1 2 0 π 2 ( l o g s i n 2 t l o g 2 ) d t 4 I = 0 π 2 l o g s i n 2 t d t 0 π 2 l o g 2 d t P u t 2 t = u 2 d t = d u d t = d u 2 4 I = 1 2 0 π l o g s i n u d u 0 π 2 l o g 2 d t [ Changingthelimit ] 4 I = 1 2 * 2 0 π 2 l o g s i n u d u l o g 2 [ t ] 0 π 2 4 I = 0 π 2 l o g s i n u d u l o g 2 . π 2 4 I = 2 I π 2 . l o g 2

 

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

LetI=0πxlogsinxdx(i)=0π(πx)logsin(πx)dx[0af(x)dx=0af(ax)dx]=0π(πx)logsinxdx(ii)Adding(i)and(ii)2I=0π[(πx)logsinx+xlogsinx]dx2I=0ππlogsinxdx2I=2π0π2logsinxdx[?0af(x)dx=20a/2f(x)dx]I=π0π2logsinxdx(iii)I=π0π2logsin(π2x)dxI=π0π2logcosxdx(iv)Onadding(iii)and(iv),weget2I=π0π2(logsinx+logcosx)dx2I=π0π2logsinxcosxdx2I=π0π2log2sinxcosx2dx2I=π0π2logsin2xdxπ0π2log2dxPut2x=t2dx=dtdx=dt22I=π0πlogsintdtπ.log20π21dx[Changingthe limit ]2I=Iπ.log2[x]0π2&

 

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

Sol:

LetI=01xlogII|1+2x|Idx=[log|1+2x|.(x22)]0101(1.21+2x.x22)dx=12[x2log(1+2x)]0101(x21+2x)dx=12[log30]01(x2x/21+2x)dx=12log31201xdx+1201x1+2xdx=12log312[x22]01+12.1201(2x+11)1+2xdx=12log314[10]+14011dx140112x+1dx=12log314+14[x]0114.12[log|2x+1|]01=12log314+1418[log30]=12log318log3=38log3Hence,I=38log3.

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Long Answer Type Questions as classified in NCERT Exemplar

New answer posted

4 months ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

This is a Matching Type Questions as classified in NCERT Exemplar

Ans: (i) — (e);  (ii) — (d);  (iii) — (a);  (iv) — (b);  (v) — (f); (vi) — (c)

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Matching Type Questions as classified in NCERT Exemplar

Ans: (i) →  (c); (ii) →  (d); (iii) →  (a); (iv) →  (b).

 

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Matching Type Questions as classified in NCERT Exemplar

Ans: (i) →  (b); (ii) →  (e); (iii) →  (d); (iv) →  (a); (v) →  (c)

 

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

This is a Matching Type Questions as classified in NCERT Exemplar

 Ans: (i) →  (d); (ii) →  (e); (iii) →  (a); (iv) →  (b); (v) →  (c)

 

New answer posted

4 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

This is a Assertion and Reason Type Questions as classified in NCERT Exemplar

Ans: D

The silver mirror test can be used to determine Tollen's. [Ag (NH3)2] + OH - . Only aldehydes, not ketones, react with Tollen's reagent to create silver.

A silver mirror test is not given with this affirmative test.

The carbonyl group is present in both aldehyde and ketone.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.