Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

a month ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

x? + 2 (20)¹/? x³ + (20)¹/²x² + . No.
x² = - (20)¹/? x - (5)¹/².
α+β = - (20)¹/? , αβ=5¹/².
α²+β² = (α+β)²-2αβ = (20)¹/² - 2 (5)¹/² = 0.
α? +β? = (α²+β²)² - 2 (αβ)² = 0 - 2 (5) = -10.
α? +β? = (α? +β? )² - 2 (αβ)? = (-10)² - 2 (5)² = 100 - 50 = 50.

New answer posted

a month ago

0 Follower 1 View

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

C= (2,3), O= (0,0). r = OC = √13.
Slope of OC = 3/2. Slope of PQ = -2/3.
Let P= (x, y). Vector CP = (x-2, y-3). Vector OC = (2,3).
CP.OC=0 ⇒ 2 (x-2)+3 (y-3)=0 ⇒ 2x+3y=13.
Also (x-2)²+ (y-3)²=13.
From 2x=13-3y, x= (13-3y)/2.
(13-3y)/2-2)²+ (y-3)²=13 ⇒ (9-3y)/2)²+ (y-3)²=13
(9 (y-3)²/4) + (y-3)² = 13 ⇒ (13/4) (y-3)²=13 ⇒ (y-3)²=4 ⇒ y-3=±2.
y=5 or y=1.
If y=5, x=-1. P= (-1,5).
If y=1, x=5. Q= (5,1).

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

? P? =? P? ⇒ n!/ (n-r)! = n!/ (n-r-1)! ⇒ n-r=1.
? C? =? C? ⇒ r + (r-1) = n ⇒ n = 2r-1.
Substitute n: (2r-1)-r=1 ⇒ r=2.

New answer posted

a month ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

Reflected point of (2,1) about y-axis is (-2,1).

Reflected ray passes through (-2,1) and (5,3).
Equation: (y-1)/ (x+2) = (3-1)/ (5+2) = 2/7 ⇒ 2x - 7y + 11 = 0.
This is one directrix. Let the other be 2x - 7y + α = 0.
Distance between directrices = 2a/e = |11-α|/√53.
Distance from focus to directrix = a/e - ae = 8/√53.
a/e (1-e²) = 8/√53.
e=1/3. a/e (8/9) = 8/√53 ⇒ a/e = 9/√53.
2a/e = 18/√53 = |11-α|/√53.
|11-α| = 18.
11-α = 18 ⇒ α = -7.
11-α = -18 ⇒ α = 29.
Other directrix: 2x-7y-7=0 or 2x-7y+29=0.

New answer posted

a month ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

cotθ = (1+cos2θ)/sin2θ
cot (π/24) = (1+cos (π/12)/sin (π/12)
cos (π/12) = cos (15°) = cos (45-30) = (√3+1)/2√2
sin (π/12) = sin (15°) = sin (45-30) = (√3-1)/2√2
cot (π/24) = (1+ (√3+1)/2√2)/ (√3-1)/2√2) = (2√2+√3+1)/ (√3-1)
= (2√2+√3+1) (√3+1)/2 = (2√6+2√2+3+√3+√3+1)/2
= √6 + √2 + √3 + 2

New answer posted

a month ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

S? : x² + y² - x - y - 1/2 = 0, C? : (1/2, 1/2), r? = √ (1/4)+ (1/4)+ (1/2) = 1.
S? : x² + y² - 4y + 7/4 = 0, C? : (0, 2), r? = √ (4 - 7/4) = 3/2.
S? : (x-2)² + (y-1)² ≤ r², C? : (2, 1).
A ∪ B ⊂ C means both circles S? and S? must be inside S?
Distance C? = √ (2-1/2)² + (1-1/2)²) = √ (9/4 + 1/4) = √10/2.
Condition: r ≥ C? + r? ⇒ r ≥ √10/2 + 1.
Distance C? = √ (2-0)² + (1-2)²) = √5.
Condition: r ≥ C? + r? ⇒ r ≥ √5 + 3/2.
√10/2 + 1 ≈ 1.58 + 1 = 2.58.
√5 + 3/2 ≈ 2.23 + 1.5 = 3.73.
So minimum r = (√10+2)/2 and (2√5+3)/2. We need the maximum of these two.
Let's recheck the question logic f

...more

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Truth table analysis shows that (P ∨ Q) ∧ (¬P) is equivalent to Q ∧ ¬P.
Then (Q ∧ ¬P) ⇒ Q. This is a tautology.
The provided solution seems to have an error.
Let's check the options. (P ∨ Q) is a tautology. (P ∧ ¬Q) is a contradiction.
~ (P ⇒ Q) ⇔ P ∧ ¬Q is true.

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

sinθ + cosθ = 1/2
16 (sin (2θ) + cos (4θ) + sin (6θ)
= 16 [2sin (4θ)cos (2θ) + cos (4θ)]
= 16 [4sin (2θ)cos² (2θ) + 2cos² (2θ) - 1] . (i)
Now, sinθ + cosθ = 1/2, squaring on both sides, we get
1 + sin (2θ) = 1/4
sin (2θ) = -3/4
cos² (2θ) = 1 - sin² (2θ) = 1 - 9/16 = 7/16
From equation (i)
16 [4 (-3/4) (7/16) + 2 (7/16) - 1]
16 [-21/16 + 14/16 - 16/16] = 16 [-23/16] = -23

New answer posted

a month ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

S? : |z - 3 - 2i|² = 8
|z - (3 + 2i)| = 2√2
(x - 3)² + (y - 2)² = (2√2)²
S? : Re (z) ≥ 5
x ≥ 5
S? : |z - z? | ≥ 8
|2iy| ≥ 8
2|y| ≥ 8
|y| ≥ 4
y ≥ 4 or y ≤ -4
From the graph of the circle (S? ) and the regions (S? and S? ), we can see that there is one point of intersection at (5, 4).
∴ n (S? ∩ S? ∩ S? ) = 1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.