Relations and Functions

Get insights from 125 questions on Relations and Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Relations and Functions

Follow Ask Question
125

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 26 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R= {(a,b)|ab| is even } is a relation in set A= {1,2,3,4,5}

For all aA , |aa|=0 is even.

So, (a,a)R . Hence R is reflexive

For a,bA and (a,b)R

|ab| is even

|b+a| is even |

|(ba)| is even

|ba| is even

i.e., (b,a)R

Hence, R is symmetric.

For a,b,cA and (a,b)R and (b,c)R

We have |ab| is even

and |bc| is even

then, |ab|+|bc| is even as even + even=even

|ab+bc| is even

|ac| is even

 (a,c)R

So, R is transitive.

 R is an equivalence relation

All elements of [1,3,5] are odd positive numbers and its subset are odd and their difference given an even number. Hence, they are related to each other.

Similarly,

...more

New answer posted

4 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (x, y):x&y have same number of pages } is a relation in set of A of all books in

For  (x, y)R&x, yA

As x=y=same no. of pages

Then,   (x, x)R

Hence, R is reflexive.

For  (x, y)R and x, yA

Also,   (y, x)R ,  x=y

Hence, R is symmetric.

For x, y, zA and  (x, y)R and  (y, z)R

x=y and y=z

x=z

i.e.,   (x, z)R

hence, R is also transitive

 R is an equivalence relation.

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (1, 2), (2, 1)} is a relation in set  {1, 2, 3}

Then, as  (1, 1)R and  (2, 2)R

So, R is not reflective

As  (1, 2)R and  (2, 1)R

So, R is symmetric

And as  (1, 2)R, (2, 1)R but  (1, 1)R

So, R is not transitive.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R= {(a,b):ab3} is a relation in R.

For, (a,b)R and a=12 we can write

aa3 => 12(12)3 => 1218 which is not true.

So, R is not reflexive.

For (a,b)=(1,2)R we have,

ab3 => 123 => 18 is true.

So, (1,2)R

But 213 => 21 is not true

So, (2,1)R and (b,a)R

Hence, R is not symmetric.

For, (a,b)=(10,4) and (b,c)=(4,2)R

1043 => 1064 is true=> (10,4)R

423 => 48 is true=> (4,2)R

But 1023 => 108 is not true=> (10,2)R

Hence, for (a,b),(b,c)R,(a,c)R

So, R is not transitive.

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have, R=  { (a, b):ab} is a relation in R.

For,  aR ,

ab but ba is not possible i.e.,   (b, a)R

Hence, R is not symmetric.

For  (a, b)R& (b, c)R and a, b, cR

ab and bc

So,  ac

i.e.,   (a, c)R

 R is transitive.

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R=  { (a, b):b=a+1} is a relation in set  {1, 2, 3, 4, 5, 6}

So, R=  { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)}

As,   (1, 1)R , R is not reflexive

As,   (1, 2)R but  (2, 1)R , R is not symmetric

And as  (1, 2) &  (2, 3)R but  (1, 3)R

Hence, R is not transitive.

New answer posted

4 months ago

0 Follower 6 Views

V
Vishal Baghel

Contributor-Level 10

We have,

R= {(a,b):ab2} is a relation in R.

For aR then is b=a,aa2 is not true for all real number less than 1.

Hence, R is not reflexive.

Let (a,b)R and a=1 and b=2

Then, ab2 = 122 = 14 so, (1,2)R

But (b,a)=(2,1)

i.e., 212 = 21 is not true

so, (2,1)R

hence, R is not symmetric.

For, (a,b)=(10,4)&(b,c)=(4,2)R

We have, a=1042=b2 => 1016 is true

So, (10,4)R

And 422 => 44 So, (4,2)R

But 1022 => 104 is not true.

So, (10,2)R

Hence, R is not transitive.

New answer posted

4 months ago

0 Follower 56 Views

V
Vishal Baghel

Contributor-Level 10

(i) We have, R={(x,y):3xy=0} a relation in set A= {1,2,3..........14}

For xA,y=3x or yx i.e.,

(x,x) does not exist in R

 R is not reflexive.

For (x,y)R,y=3x

Then (y,x)x3y

So (y,x)R

 R is not symmetric

For (x,y)R and (y,z)R . We have

y=3x and z=3y

Then z=3(3x)=9x

i.e., (x,z)R

 R is not Transitive

(ii) We have,

R= {(x,y):y=x+5 &x<4} is a relation in N

{(1,1+5),(2,2+5),(3,3+5)}

{(1,6),(2,7),(3,8)}

Clearly, R is not reflexive as (x,x)R and x<4&xN

Also, R is not symmetric as (1,6)R but (6,1)R

And for (x,y)R(y,z)R . Hence, R is not Transitive.

(iii) R= {(x,y);y is divisible by x } is a relation in set

A= {1,2,3,4,5,6}

So, R= {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(5,5),(6,6)}

Hence, R is reflexive because (1,1),(2,2),(3,3),(4,4),(5,5),(6,6)R i.e., (x,x)R

R is not sy

...more

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.