Statistics
Get insights from 119 questions on Statistics, answered by students, alumni, and experts. You may also ask and answer any question you like about Statistics
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
a month agoContributor-Level 10
σ²=variance
µ=mean
σ² = Σ (x? -µ)²/n
µ=17
⇒ Σ (ax+b)/17 = 17
⇒ 9a+b=17
σ²=216
⇒ Σ (ax+b-17)²/17 = 216
⇒ Σa² (x-9)²/17 = 216
⇒ a² (81-18*9+3*35) = 216
⇒ a² (24) = 216 ⇒ a²=9 ⇒ a=3 (a>0)
⇒ From (1), b=-10
So, a+b=-7
New answer posted
a month agoContributor-Level 10
Mean = 10 = (3+7+9+12+13+20+x+y)/8
16 = x + y
Variance σ² = 25 = (Σx?²/8) - (mean)²
25 = (3²+7²+9²+12²+13²+20²+x²+y²)/8 = 100
x² + y² = 148
(x+y)² = x² + y² + 2xy
256 = 148 + 2xy
x . y = 54
New answer posted
a month agoContributor-Level 10
5+3+7+a+b = 25 ⇒ a+b=10
S.D. = √(((5²+3²+7²+a²+b²)/5) - 5²) = 2
√((a²+b²+83)/5) - 25 = 4 ⇒ a²+b² = 62
⇒ (a+b)² - 2ab = 62 ⇒ ab = 19
So equation whose roots are a and b is x² - 10x + 19 = 0
New answer posted
a month agoContributor-Level 10
Mean = (6+10+7+13+a+12+b+12)/8 = (60+a+b)/8 = 9 ⇒ a+b=12.
Variance = (Σx? ²/n) - (mean)² = 37/4.
Σx? ²/8 - 81 = 37/4.
Σx? ² = 8 (81+9.25) = 8 (90.25) = 722.
Σx? ² = 36+100+49+169+a²+144+b²+144 = 642+a²+b².
642+a²+b²=722 ⇒ a²+b²=80.
(a+b)²=144 ⇒ a²+b²+2ab=144 ⇒ 80+2ab=144 ⇒ 2ab=64.
(a-b)² = a²+b²-2ab = 80-64 = 16.
New answer posted
a month agoContributor-Level 10
Given
&
(i) & (ii)
Now variance = 1 given
=> (α - β) (α - β + 4) = 0
Since
New answer posted
a month agoContributor-Level 10
Class | Frequency | xi | xifi |
|
0 - 6 6 – 12 12 – 18 18 – 24 24 – 30 | a b 12 9 5 a + b + 26 = N | 3 9 15 21 27 | 3a 9b 180 189 135 | -> 81a + 37b = 1018 -(i) |
->a + b = 18 -(ii)
Solving (i) & (ii) a = 8 & b = 10
->(a – b)2 = 4
New answer posted
a month agoContributor-Level 10
For every a, there must be a2 – 2. So, there will be infinitely many pairs (a, b)
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 688k Reviews
- 1800k Answers