Three Dimensional Geometry

Get insights from 212 questions on Three Dimensional Geometry, answered by students, alumni, and experts. You may also ask and answer any question you like about Three Dimensional Geometry

Follow Ask Question
212

Questions

0

Discussions

10

Active Users

0

Followers

New answer posted

a month ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

 Normal vector to the given plane be

2 i ^ j ^ + 3 k ^ s o                   

Equation of line QS :

x 1 2 = y 3 1 = z 4 1 = λ

So let P ( 2 λ + 1 , λ + 3 , λ + 4 )  

Now P lies on given plane so

4 λ + 2 + λ 3 + 8 λ + 4 + 3 = 0  

So, S (-3, 5, 2)

also given R lies on given plane so

6 – 5 + γ + 3 = 0 so   γ = -4

So, R (3, 5, -4)

SR2 = 72

 

New answer posted

a month ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

Required equation of plane will be (x – y – z – 1) + λ (2x + y – 3z + 4) = 0

Given r distance of (i) from origin = 2 2 1  

| 4 λ 1 | ( 2 λ + 1 ) 2 + ( λ 1 ) 2 + ( 3 λ + 1 ) 2 = 2 2 1   

λ = 1 2 o r 1 5 1 5 4

So plane be 4x – y – 5z + 2 = 0 for λ = 1 2

New answer posted

a month ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

Equation of line PQ :

x 1 2 = y + 2 3 = z 3 6 = k

So, let Q (2k + 1, 3k – 2, -6k + 3) Q lies on given plane so

2k + 1 – 3k + 2 – 6k + 3 = 5

             

7 k = 1 o r k = 1 7

So, Q ( 9 7 , 1 1 7 , 1 5 7 )

Now required distance = PQ = 4 4 9 + 9 4 9 + 3 6 4 9 = 1

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Equation of the plane will be { r . ( i ^ + j ^ + k ^ ) 1 } + λ { r . ( 2 i ^ + 3 j ^ k ^ ) + 4 } = 0   

r . { ( 1 + 2 λ ) i + ( 1 + 3 λ ) j ^ + ( 1 λ ) k ^ } + ( 4 λ 1 ) = 0               

-> ( 1 + 2 λ ) x + ( 1 + 3 λ ) y + ( 1 λ ) z + ( 4 λ 1 ) = 0 . . . . . . . . . ( i )

(i) is parallel to x-axis so its d.r.s will be (1, 0, 0)

-> 1 + 2 λ = 0 s o λ = 1 2

Hence required equation will be

r { 1 2 j ^ . + 3 2 k ^ } + ( 3 ) = 0

r . ( j ^ 3 k ^ ) + 6 = 0              

             

New answer posted

a month ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Given 2 l + 2 m n = 0 . . . . . . . . ( i )

m n + n l + l m = 0 . . . . . . . . . . . ( i i )

& w e h a v e l 2 + m 2 + n 2 = 1 . . . . . . . . . . ( i i i )

( i ) 2 ( l + m ) = n  

  ( i i ) l m + n ( l + m ) = 0

2 l 2 + 2 m 2 + 5 l m = 0             

(a) lm=2  

(i) 2 l m + 2 n m = 0  

n m = 2  

S o , ( l , m , n ) = ( 2 m , m , 2 m )  

= (-2, 1, -2)

(b)   l m = 1 2 g i v e s n = 2 l

( l , m , n ) = ( l , 2 l , 2 l ) = ( 1 , 2 , 2 )

N o w , c o s θ = 2 2 + 4 3 * 3 = 0

θ = π 2  

             

New answer posted

2 months ago

0 Follower 5 Views

V
Vishal Baghel

Contributor-Level 10

r p l a n e s

n 1 , n 2 = 0 λ = 3 4

Where required plane P is

( 1 + λ ) x + ( 2 λ ) y + ( 3 λ ) z + 1 6 λ = 0

2 x + y + 2 z 5 = 0

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

B ( 1 + 2 λ , 3 + λ , 4 + 2 λ )

x – 2y – z = 3 => λ = 6 B ( 1 1 , 3 , 8 )

N ( 1 + t , 3 2 t , 4 t )  

x 2 y z = 3 t = 2 N ( 3 , 1 , 2 )  

Line NB : x 3 7 = y + 1 1 = 3 2 5

d 2 = P M 2 = | P Q * R | 2 | R | 2

| R | 2 = 7 5

d 2 = 1 9 5 0 7 5 = 2 6  

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

n 1 = 6 i ^ + 7 j ^ + 8 k ^ n 2 = 3 i ^ + 5 j ^ + 7 k ^

n 1 * n 2 = | i ^ j ^ k ^ 6 7 8 3 5 7 | = 9 i ^ 1 8 j ^ + 9 k              

the normal to required plane is i ^ 2 j ^ + k ^

Equation of plane 1(x + 1) – 2(y – 1) + (z – 3) = 0

x – 2y + z = 0

P (7, -2, 13)

P Q = | 7 + 4 + 1 3 1 + 4 + 1 | = 2 4 6

( P Q ) 2 = 2 4 * 2 4 6 = 9 6

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Equation of required plane

( x + y + 4 z 1 6 ) + λ ( x + y + z 6 ) = 0 it passes (1, 2, 3)

1 + λ ( 2 ) = 0

λ = 1 2

Equation of plane

( 1 λ ) x + ( 1 + λ ) y + ( 4 + λ ) z 1 6 6 λ = 0              

3 2 x + 1 2 y + 7 2 z 1 3 = 0              

3 x + y + 7 z = 2 6              

  (4, 2, 2) not satisfying the plane

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

l 1 :

r = 1 8 i ^ + λ ( 1 8 , 1 4 2 , 0 )

r = 1 8 i ^ + μ ( 1 8 , 0 , 1 6 3 )

n = | i ^ j ^ k ^ 1 8 1 4 2 0 1 8 0 1 6 3 |

= ( 1 2 4 6 , 1 4 8 3 , 1 3 2 2 )

d = p r o j e c t i o n o f A C o n n = ( 2 8 , 0 , 0 ) . ( 4 , 2 2 , 3 3 ) 1 6 + 8 + 2 7 = 1 1 6 + 8 + 2 7

d2= 1 5 1                                       

 

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.