Class 11th
Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
3 months agoContributor-Level 10
As the factors controlling temperature and voltage supply are beyond prediction and control so the error occurred due to unpredictable fluctuations of temperature and voltage would be random errors.
New answer posted
3 months agoContributor-Level 9
lim (x→0) [a e? - b cos (x) + c e? ] / (x sin (x) = 2
Using Taylor expansions around x=0:
lim (x→0) [a (1+x+x²/2!+.) - b (1-x²/2!+.) + c (1-x+x²/2!+.)] / (x * x) = 2
lim (x→0) [ (a-b+c) + x (a-c) + x² (a/2+b/2+c/2) + O (x³)] / x² = 2
For the limit to exist, the coefficients of lower powers of x in the numerator must be zero.
a - b + c = 0
a - c = 0 ⇒ a = c
Substituting a=c into the first equation: 2a - b = 0 ⇒ b = 2a.
The limit becomes: lim (x→0) [x² (a/2 + b/2 + c/2)] / x² = (a+b+c)/2
(a + b + c) / 2 = 2 ⇒ a + b + c = 4.
New answer posted
3 months agoContributor-Level 9
|z+i|/|z-3i| = 1 ⇒ |z+i| = |z-3i|. This means z is on the perpendicular bisector of the segment from -i to 3i. The midpoint is i, so z = x+i.
w = z? - 2z + 2. Let z = x + iy.
w = (x² + y²) - 2 (x + iy) + 2 = (x² - 2x + 2 + y²) - 2iy.
Re (w) = x² - 2x + 2 + y² = (x - 1)² + 1 + y².
From the first condition, y=1. Re (w) = (x - 1)² + 1 + 1 = (x - 1)² + 2.
Re (w) is minimum for x = 1.
The common z is z = 1 + i.
w = (1+i) (1-i) - 2 (1+i) + 2 = 2 - 2 - 2i + 2 = 2 - 2i.
w² = (2 - 2i)² = 4 (1 - 2i - 1) = -8i.
w? = (-8i)² = -64 ∈ R.
∴ least n ∈ N for which w? ∈ R is n=4.
New answer posted
3 months agoContributor-Level 10
Let t = 3^ (x/2). As x→2, t→3^ (2/2) = 3.
The limit becomes lim (t→3) [ (t² + 27/t²) - 12 ] / [ (t - 3²/t) ].
lim (t→3) [ (t? - 12t² + 27)/t² ] / [ (t² - 9)/t ].
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t²-9) ].
lim (t→3) [ (t²-3) / t ].
Substituting t=3: (3²-3)/3 = (9-3)/3 = 6.
(The provided solution arrives at 36, let's re-check the problem statement)
The denominator is t - 9/t, not t - 3²/t.
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t-3) (t+3)/t ]
This leads to the same cancellation. Let's re-examine the image's steps.
lim (t-3) (t³ - 27)/ (t-3) . The algebra in the image is hard to follow but seems to manipul
New answer posted
3 months agoContributor-Level 10
Var (1, 2, ., n) = (Σn²/n) - (Σn/n)² = 10.
(n (n+1) (2n+1)/6n) - (n (n+1)/2n)² = 10.
(n+1) (2n+1)/6 - (n+1)/2)² = 10.
(n+1)/12 * [2 (2n+1) - 3 (n+1)] = 10.
(n+1)/12 * (4n+2 - 3n-3) = 10.
(n+1) (n-1)/12 = 10.
n² - 1 = 120 ⇒ n² = 121 ⇒ n = 11.
Var (2, 4, ., 2m) = Var (2* (1, 2, ., m) = 2² * Var (1, 2, ., m) = 16.
4 * Var (1, 2, ., m) = 16.
Var (1, 2, ., m) = 4.
Using the formula from above: (m²-1)/12 = 4.
m² - 1 = 48 ⇒ m² = 49 ⇒ m = 7.
m + n = 7 + 11 = 18.
New question posted
3 months agoNew answer posted
3 months agoContributor-Level 10
Digits are 1, 3, 5, 7, 9. We need to form a 6-digit number where exactly one digit is repeated.
Choose the digit to be repeated:? C? ways.
Choose the positions for these two repeated digits:? C? ways.
Arrange the remaining 4 distinct digits in the remaining 4 places:? P? = 4! ways.
Total numbers =? C? *? C? * 4! = 5 * 15 * 24 = 1800.
The solution in the image 5/2 (6!) seems to follow a different logic which is unclear. 5 * (6!/2) = 5 * 360 = 1800. This logic is: choose one of 5 digits to repeat. Arrange the 6 digits, and since two are identical, divide by 2!
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 66k Colleges
- 1.2k Exams
- 681k Reviews
- 1800k Answers



