Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

38

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 1 View

R
Raj Pandey

Contributor-Level 9

Kindly consider the following Image 

 

New answer posted

2 months ago

0 Follower 8 Views

R
Raj Pandey

Contributor-Level 9

lim (x→0) [a e? - b cos (x) + c e? ] / (x sin (x) = 2
Using Taylor expansions around x=0:
lim (x→0) [a (1+x+x²/2!+.) - b (1-x²/2!+.) + c (1-x+x²/2!+.)] / (x * x) = 2
lim (x→0) [ (a-b+c) + x (a-c) + x² (a/2+b/2+c/2) + O (x³)] / x² = 2
For the limit to exist, the coefficients of lower powers of x in the numerator must be zero.
a - b + c = 0
a - c = 0 ⇒ a = c
Substituting a=c into the first equation: 2a - b = 0 ⇒ b = 2a.
The limit becomes: lim (x→0) [x² (a/2 + b/2 + c/2)] / x² = (a+b+c)/2
(a + b + c) / 2 = 2 ⇒ a + b + c = 4.

New answer posted

2 months ago

0 Follower 3 Views

R
Raj Pandey

Contributor-Level 9

|z+i|/|z-3i| = 1 ⇒ |z+i| = |z-3i|. This means z is on the perpendicular bisector of the segment from -i to 3i. The midpoint is i, so z = x+i.
w = z? - 2z + 2. Let z = x + iy.
w = (x² + y²) - 2 (x + iy) + 2 = (x² - 2x + 2 + y²) - 2iy.
Re (w) = x² - 2x + 2 + y² = (x - 1)² + 1 + y².
From the first condition, y=1. Re (w) = (x - 1)² + 1 + 1 = (x - 1)² + 2.
Re (w) is minimum for x = 1.
The common z is z = 1 + i.
w = (1+i) (1-i) - 2 (1+i) + 2 = 2 - 2 - 2i + 2 = 2 - 2i.
w² = (2 - 2i)² = 4 (1 - 2i - 1) = -8i.
w? = (-8i)² = -64 ∈ R.
∴ least n ∈ N for which w? ∈ R is n=4.

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

Let t = 3^ (x/2). As x→2, t→3^ (2/2) = 3.
The limit becomes lim (t→3) [ (t² + 27/t²) - 12 ] / [ (t - 3²/t) ].
lim (t→3) [ (t? - 12t² + 27)/t² ] / [ (t² - 9)/t ].
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t²-9) ].
lim (t→3) [ (t²-3) / t ].
Substituting t=3: (3²-3)/3 = (9-3)/3 = 6.
(The provided solution arrives at 36, let's re-check the problem statement)
The denominator is t - 9/t, not t - 3²/t.
lim (t→3) [ (t²-9) (t²-3) / t² ] * [ t / (t-3) (t+3)/t ]
This leads to the same cancellation. Let's re-examine the image's steps.
lim (t-3) (t³ - 27)/ (t-3) . The algebra in the image is hard to follow but seems to manipul

...more

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Var (1, 2, ., n) = (Σn²/n) - (Σn/n)² = 10.
(n (n+1) (2n+1)/6n) - (n (n+1)/2n)² = 10.
(n+1) (2n+1)/6 - (n+1)/2)² = 10.
(n+1)/12 * [2 (2n+1) - 3 (n+1)] = 10.
(n+1)/12 * (4n+2 - 3n-3) = 10.
(n+1) (n-1)/12 = 10.
n² - 1 = 120 ⇒ n² = 121 ⇒ n = 11.

Var (2, 4, ., 2m) = Var (2* (1, 2, ., m) = 2² * Var (1, 2, ., m) = 16.
4 * Var (1, 2, ., m) = 16.
Var (1, 2, ., m) = 4.
Using the formula from above: (m²-1)/12 = 4.
m² - 1 = 48 ⇒ m² = 49 ⇒ m = 7.
m + n = 7 + 11 = 18.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New question posted

2 months ago

0 Follower 2 Views

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Digits are 1, 3, 5, 7, 9. We need to form a 6-digit number where exactly one digit is repeated.

Choose the digit to be repeated:? C? ways.

Choose the positions for these two repeated digits:? C? ways.

Arrange the remaining 4 distinct digits in the remaining 4 places:? P? = 4! ways.
Total numbers =? C? *? C? * 4! = 5 * 15 * 24 = 1800.
The solution in the image 5/2 (6!) seems to follow a different logic which is unclear. 5 * (6!/2) = 5 * 360 = 1800. This logic is: choose one of 5 digits to repeat. Arrange the 6 digits, and since two are identical, divide by 2!

New answer posted

2 months ago

0 Follower 2 Views

R
Raj Pandey

Contributor-Level 9

S? = ∑ tan? ¹ (6? / (2²? ¹ + 3²? ¹) from r=1 to k. (Assuming n in image is r)
t? = tan? ¹ (6? / (2²? ¹ + 3²? ¹)
= tan? ¹ ( (3/2) * (3/2)^ (2r) / ( (9/4) + (3/2)^ (2r+2) (This seems overly complex. Let's re-examine the image's simplification).
t? = tan? ¹ (6? / (2 * 4? + 3 * 9? ). The image simplifies the denominator to 2²? ¹ + 3²? ¹, which is different. Following the image's next step:
t? = tan? ¹ [ 6? / ( 1 + (3/2)^ (2r+1) ] (This denominator is incorrect).
The image seems to simplify t? into:
t? = tan? ¹ (3/2)? ¹) - tan? ¹ (3/2)? )
S? = [tan? ¹ (3/2)²) - tan? ¹ (3/2)] + [tan? ¹ (3/2)³) - tan? ¹ (3/2)²)] + . + [t

...more

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Expression = (49)¹²? - 1) / 48
This uses the sum of a geometric series or a? - b? factorization.
(x? - 1) / (x - 1) = 1 + x + x² + . + x? ¹.
Let x = 49. (49¹²? - 1)/48 is an integer.
The solution shows (49? ³-1) (49? ³+1) / 48. This is correct factorization. Since 49 is odd, 49? ³ is odd. So 49? ³-1 and 49? ³+1 are consecutive even numbers. One is divisible by 2, the other by 4, so their product is divisible by 8. Also, 49 ≡ 1 (mod 3), so 49? ³-1 is divisible by 3. Hence the numerator is divisible by 24. It is also divisible by 48.

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.