Class 11th

Get insights from 8k questions on Class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Class 11th

Follow Ask Question
8k

Questions

0

Discussions

38

Active Users

0

Followers

New answer posted

2 months ago

0 Follower 4 Views

R
Raj Pandey

Contributor-Level 9

Let z = αi + βj be a complex number & √3i + j = (√3 + i) where I = √-1.
|z| = |z - (√3 + i)| and |z| = |√3 + i| = 2.
This implies z lies on the perpendicular bisector of the segment from 0 to √3+i and on a circle of radius 2 centered at the origin.
z = (√3 + i) ( (1+i)/√2 )
z = (1/√2) [ (√3 - 1) + I (√3 + 1)]
∴ α = (√3 - 1)/√2, β = (√3 + 1)/√2
Area of required triangle = (1/2) * base * height = (1/2) * |α| * |β| * 2 (This seems to be area of triangle with vertices 0, z, and another point)
The provided calculation: Area = (1/2) * | (√3-1)/√2| * | (√3+1)/√2| = (1/2) * (3-1)/2 = 1/2.

New answer posted

2 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

y = √ (2cos²α / (sinα cosα) + 1/sin²α)
y = √ (2cotα + cosec²α)
y = √ (2cotα + 1 + cot²α) = √ (1 + cotα)²) = |1 + cotα|.
Given α is in a range where 1+cotα is negative, y = -1 - cotα.
dy/dα = - (-cosec²α) = cosec²α.
At α = 5π/6, dy/dα = cosec² (5π/6) = (1/sin (5π/6)² = (1/ (1/2)² = 2² = 4.

New answer posted

2 months ago

0 Follower 8 Views

A
alok kumar singh

Contributor-Level 10

Given Re (z-1)/ (2z+i) = 1, where z = x + iy.
(z-1)/ (2z+i) = [ (x-1) + iy] / [2x + I (2y+1)]
To rationalize, multiply the numerator and denominator by the conjugate of the denominator [2x - I (2y+1)].
Numerator = [ (x-1) + iy] * [2x - I (2y+1)] = 2x (x-1) - I (x-1) (2y+1) + i2xy + y (2y+1)
Real part of the numerator = 2x (x-1) + y (2y+1).
Denominator = (2x)² + (2y+1)².
Re (z-1)/ (2z+i) = [2x (x-1) + y (2y+1)] / [ (2x)² + (2y+1)²] = 1.
2x² - 2x + 2y² + y = 4x² + 4y² + 4y + 1.
0 = 2x² + 2y² + 2x + 3y + 1.
So, 2x² + 2y² + 2x + 3y + 1 = 0.

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

. Let the terms in Arithmetic Progression be a – 2d, a – d, a, a + d, a + 2d.
Sum of terms: (a – 2d) + (a – d) + a + (a + d) + (a + 2d) = 5a.
5a = 25 ⇒ a = 5.
Product of terms: (5 – 2d) (5 – d) (5) (5 + d) (5 + 2d) = 2520.
5 (25 – 4d²) (25 – d²) = 2520.
(25 – 4d²) (25 – d²) = 504.
625 – 25d² – 100d² + 4d? = 504.
4d? – 125d² + 121 = 0.
Factoring the equation: (4d² - 121) (d² - 1) = 0.
So, d² = 1 or d² = 121/4.
d = ±1 or d = ±11/2.
If d = ±1, the terms are 3, 4, 5, 6, 7.
If d = ±11/2, the terms are -6, -1/2, 5, 21/2, 16.
The largest term is 5 + 2d = 5 + 2 (11/2) = 5 + 11 = 16.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

Given 2ae = 6 and 2a/e = 12.
From these, ae = 3 and a/e = 6.
Multiplying the two equations: (ae) (a/e) = 3 * 6 => a² = 18.
We know that b² = a² (1 - e²) = a² - a²e² = 18 - (ae)² = 18 - 3² = 18 - 9 = 9.
The length of the latus rectum (L.R.) is 2b²/a.
L.R. = 2 * 9 / √18 = 18 / (3√2) = 6/√2 = 3√2.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

1st observation: n? =10, mean x? =2, variance σ? ²=2.
Σx? = n? x? = 20.
σ? ² = (Σx? ² / n? ) - x? ² => 2 = (Σx? ²/10) - 2² => 6 = Σx? ²/10 => Σx? ² = 60.
2nd observation: n? , mean y? =3, variance σ? ²=1. Let n? =n.
Σy? = ny? = 3n.
σ? ² = (Σy? ² / n) - y? ² => 1 = (Σy? ²/n) - 3² => 10 = Σy? ²/n => Σy? ² = 10n.
Combined variance σ² = 17/9. n_total = 10+n.
Combined mean = (Σx? +Σy? )/ (10+n) = (20+3n)/ (10+n).
Combined Σ (squares) = 60+10n.
σ² = (Combined Σsq / n_total) - (Combined mean)²
17/9 = (60+10n)/ (10+n) - [ (20+3n)/ (10+n)]²
Multiply by 9 (10+n)²:
17 (10+n)² = 9 (60+10n) (10+n) - 9 (20+3n)²
17 (100+

...more

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution

 

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

1/16, a, b are in GP. So, a² = b/16 .
Also, a, b, 1/6 are in AP. So, 2b = a + 1/6.
From the first equation, b = 16a².
Substitute into the second: 2 (16a²) = a + 1/6 => 32a² - a - 1/6 = 0.
192a² - 6a - 1 = 0.
The solution appears to solve a different problem.

New answer posted

2 months ago

0 Follower 8 Views

A
alok kumar singh

Contributor-Level 10

Kindly go through the solution 

 

New answer posted

2 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

S? (x) = log? ¹? ²x + log? ¹? ³x + .
This is incorrect; the bases are numbers, not powers of 'a'. Let's assume the bases are 1/2, 1/3, 1/6, 1/11, .
The series is S' = 2, 3, 6, 11, 18, .
The differences are 1, 3, 5, 7, . which is an AP.
The n-th term t? is a quadratic in n.
t? = An² + Bn + C.
t? =A+B+C=2
t? =4A+2B+C=3
t? =9A+3B+C=6
Solving these, we get 3A+B=1 and 5A+B=3, which gives 2A=2, A=1. Then B=-2, C=3.
t? = n² - 2n + 3 = (n-1)² + 2.
The solution confirms this finding t? = 2 + (n-1)².

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 679k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.