Determinants

Get insights from 194 questions on Determinants, answered by students, alumni, and experts. You may also ask and answer any question you like about Determinants

Follow Ask Question
194

Questions

0

Discussions

5

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

The area of triangle from by the given points is area ( ΔABC) = 12 |ab+c1bc+a1ca+b1|

=12|a+b+c+1b+c1b+c+a+1c+a1c+a+b+1a+b1|C1→ C1 + C2 + C3

=12 (a+b+c+1)|1b+c11c+a11a+b1| Taking (a + b + c + 1) common from C1

= (a+b+c+1)2*0 {? c=c3}

= 0

Hence the points A, B C are collinear.

New answer posted

4 months ago

0 Follower 12 Views

V
Vishal Baghel

Contributor-Level 10

(i) Area of triangle is given by,

Δ = 12 |x1y11x2y21x3y31|=12|101601431|

= 1 2 | [ 3 + 1 8 ] | = 1 5 2 =7.5sq. units.

(ii) Area of the triangle is given by,

Δ = 12 |2711111081|

= 1 2 | [ 2 ( 1 8 ) 7 ( 1 1 0 ) + 1 ( 8 1 0 ) ] |

= 1 2 | ( 2 * ( 7 ) 7 * ( 9 ) + 2 1 * ( 2 ) ] |

= 1 2 | [ 1 4 + 6 3 2 ] | = 1 2 | 4 7 |

472 =23.5 sq. units

(iii) Area of triangle is given by,

Δ = 12 |231321181|.

= 1 2 | [ 2 * 1 0 + 3 ( 4 ) + ( 2 4 + 2 ) ] |

= 1 2 | [ 2 0 + 1 2 2 2 ] |

= 1 2 | 3 0 | = 3 0 2  = 15 sq. units.

New answer posted

4 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

Option 'C' is correct as determinant is a number associated to a square matrix.

New answer posted

4 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

Then, KA = k[a11a12a13a21a22a23a31a32a33]

=[ka11ka12ka13ka4ka22ka23ka31ka32ka33]

|KA|=|a11ka1213a2122ka2331a32ka33|

=k3|a11a12a13a21a22a22a31a32a33|

=k3|A|

So, option c is correct.

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

LHS = |a2+1abacabb2+1bccacbc2+1|.

=1abc|a(a2+1)ab2ac2a2bb(b2+1)bc2a2cb2cc(c2+1)|

=abcabc[a2+1b2c2a2b2+1c2.a2b2c2+1]Taking a, b&c common from R1, R2&R3

[ 1 + a 2 + b 2 + c 2 b 2 c 2 a 2 + b 2 + 1 + c 2 b 2 + 1 c 2 a 2 + b 2 + c 2 + 1 b 2 c 2 + 1 ] C1→ C2 + C3.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LHS = |1+a2b22ab2b2ab1a2+b22a2b2a1a2b2|.

=|1+a2b2b(2b)2ab+a(2b)2b2abb(2a)1a2+b2+a(2a)2a2bb(1a2b2)2a+a(1a2b2)1a2b2|

= | 1 + a 2 b 2 + 2 b 2 2 a b 2 a b 2 b 2 a b 2 a b 1 a 2 + b 2 + 2 a 2 2 a 2 b b + a 2 b + b 3 2 a + a a 3 a b 2 1 a 2 b 2 |

= | 1 + a 2 + b 2 0 2 b 0 1 + a 2 + b 2 2 a b ( 1 + a 2 + b 2 ) a ( 1 + a 2 + b 2 ) 1 a 2 b 2 |

= (1 + a2 + b2)2 [(1 -a2 + b2) - 2a (-a)]

= (1 + a2 + b2)2 (1 -a2 + b2 + 2a2)

= (1 + a2 + b2)2 (1 + a2 + b2)

= (1 + a2 + b2)3 = R.H.S.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

LHS = |1xx2x21xxx21|

=|1+x2+xx+1+x2x2+x+1x21xxx21|R1→ R1 + R2 + R3

= (1 + x2 + x) (1 -x)2 [ (1 + x)* 1 - (-x) x].

= (1 + x2 + x) (1 -x)2 (1 + x + x2).

= { (1 + x2 + x) (1 -x)}2

= {1 -x + x2-x3 + x-x2}2

= (1 -x3)2 = R.H.S.

New answer posted

4 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

(i) LHS = |abc2a2a2bbca2b2c2ccab|

=|abc+2b+2c2a+bca+2c2a+2b+cab2bbca2b2c2ccab|R1→ R1 + R2 + R3

=|a+b+ca+b+ca+b+c2bbca2b2c2ccab|

= (a + b + c) |1112bbca2b2c2ccab| Taking (a + b + c) common from R1

= (a + b+ c) |111112bbca2b2b2b2c2c2ccab2c|2131

= (a + b + c) |1002bbca02c0cab|.

= (a + b + c) * 1. |(a+b+c)00(a+b+c)| Expand along R1

= (a + b + c){(a + b + c)2- 0}

= (a + b +c)3 = R.H.S

(ii) LHS = |x+y+2zxyzy+z+2xyzxz+x+2y|

=|x+y+2z+x+yxyz+y+z+2x+yy+z+2xyz+x+z+x+2yxz+x+2y
C1→ C1 + C2 + C3.

=|2(x+y+z)xy2(x+y+z)y+z+2xy2(x+y+z)xz+x+2y|.

= 2 (k + y + z) |1xy1y+z+2xy1xz+x+2y| Taking 2

New answer posted

4 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

(i) LHS = |x+42x2x2xx+42x2x2xx+4|

=|x+4+2x+2x2x+x+4+2x2x+2x+x+42xx+42x2x2xx+4| R1→R1 + R2 + R3

=|5x+45x+45x+42xx+42x2x2xx+4|

Taking (5x + 4) common from R1.

= ( 5 x + 4 ) | 1 1 1 2 x x + 4 2 x 2 x 2 x x + 4 | .

= (5x + 4)[0 - (4 -x)(x- 4)]

= (5x + 4)(4 -x)(4 -x)

= (5x + 4)(4 -x)2 = R.H.S.

|y+k+y+yy+y+k+yy+y+y+kyy+kyyyy+k| R1→R1 + R2+ R3

=|3y+k3y+k3y+kyy+kyyyy+k|

= (3y + k) |111yy+kyyyy+k|

 

New answer posted

4 months ago

0 Follower 7 Views

V
Vishal Baghel

Contributor-Level 10

LHS |xx2yzyy2zxzz2xy|

=1xyz |x·xx·x2x·yzy·yy·y2y·zxz·zz·z2z·xy| Multiplying R1, R2& R3 by x, y&z.

=1xyz|x2x3xyzy2y3xyzz2z3xyz|.

=xyzxyz|x2x31y2y31z2z31| Taking xyz common from c3.

=|x2x31y2x2y3x311z2x223x311|221331.

|x2x31(yx)(y+x)(yx)(y2+x2+xy)0(zx)(z+x)(2x)(z2+x2+2x)0|

Expanding along c3 we get,

= 1 |(yx)(y+x)(yx)(y2+x2+xy)(zx)(z+x)(zx)(z2+x2+zx)|

= (y-x)(z-x). |y+xy2+x2+xyz+xz2+x2+zx| Taking (yx) & (zx) common from R1 and R2.

= (y-x)(z-x).  Taking (y-x) & (z-x) common from R1 and R2.

= (y-x)(z-x)[(y + x)(z2 + x2 + zx) - (z + x)(y2 + x2 + xy)]

= (y-x)(z-x)[yz2 + yx2 + xyz + xz2 + x3 + x2z-zy2-zx2-xyz-xy2-x3-x2y]

= y-x)(z-x)[yz2-zy2 + xz2-xy2]

= (y-x)(z-x)[yz (z-y) + x(z2-y2)]

= y-x)(z-x)(z-y)[yz + x (z + y)]             

= (- 1)(x-y)(z-x)(- 1)(y-z)[yz+ 1 xz + xy]

= (x-y)(y-z)(z-x)(xy + yz + xz). = R.H.S

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.