Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

9

Active Users

1

Followers

New answer posted

2 months ago

0 Follower 3 Views

V
Vishal Baghel

Contributor-Level 10

x d y = ( x 2 + y 2 + y ) d x

x d y y d x x 2 = 1 + y 2 x 2 d x

d ( y x ) 1 + ( y x ) 2 = d x x l n ( y x + ( y x ) 2 + 1 ) = l n x + C

α = 3 2

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

f ( x ) = 2 3 0 3 f ( λ 2 x 3 ) d λ

Substitute λ 2 x 3 = t

f ( x ) = 1 x 0 x f ( t ) t d t

differentiate using leibneitz rule

x . f ' ( x ) + f ( x ) . 1 2 x = f ( x ) x

f (1) = 3 f ( x ) = 3 x

 

New answer posted

2 months ago

0 Follower 9 Views

P
Payal Gupta

Contributor-Level 10

sin(2x2).109e(tanx2)dy+4xydx=42.x.(sinx2cosπ4cosx2sinπ4)dx

ln(tanx2)dy+4xsin(2x2)ydx=4x(sinx2cosx2)sin(2x2)dx

Integrate

y.ln(tanx2)=2.ln(sinx2+cosx21sinx2+cosx2+1)+C

x=π6,y=1 calculate C.

New answer posted

2 months ago

0 Follower 1 View

V
Vishal Baghel

Contributor-Level 10

y 2 d x + ( x 2 ? x y + y 2 ) d y = 0

d x d y + x 2 ? x y + y 2 y 2 = 0 ? d x d y + ( x y ) 2 ? ( x y ) + 1 = 0

Put x = vy ? v + y d v d y + v 2 ? v + 1 = 0

? y d v d y + v 2 + 1 = 0

? ? 6 + l n | y | = ? 4

l n | y | = ? 1 2

 

 

 

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

x ( c o s x s i n x ) e x + 1 + g ( x ) ( e x + 1 x e x ) ( e x + 1 ) 2

= 2 s i n ( x + π 4 ) + c , x > 0

g ' ( x ) = 2 c o s ( x + π 4 ) , x > 0

g + g' = 2cos x + c, x > 0

g – g' = 2 sin x + c, x > 0

New answer posted

2 months ago

0 Follower 8 Views

V
Vishal Baghel

Contributor-Level 10

  f ( x ) + f ' ( x ) + f ' ' ( x ) = x 5 + 6 4

l i m x 1 f ( x ) x 1 ( f ( 1 ) 0 ) f ( 1 ) = 0

Let f(x) = x5 + ax4 + bx3 + cx2 + dx + e

f(1) = 0 Þ 1 + a + b + c + d + e = 0

  x 5 + ( a + 5 ) x 4 + ( b + 4 a + 2 0 ) x 3 + ( c + 3 b + 1 2 a ) x 2 + ( d + 2 c + 6 b ) x + e + d + 2 c = x 5 + 6 4

Þ e + d + 2c = 64

b + 4a + 20 = 0                 c – 1 – a – b = 64

c + 3b + 12a = 0

d + 2c + 6b = 0                 a + b – c = -65

1 + a + b + c + d + e = 0   13a + 4b = -65

b + 4c = -20 * 4

-3a = 15 a = -5

f ( x ) = x 5 5 x 4 + 6 0 x 2 1 2 0 x + 6 4 f ' ( x ) = 5 x 4 2 0 x 3 + 1 2 x 1 2 0 f ' ( 1 ) = 5 2 0 + 1 2 0 1 2 0 = 1 5

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  y d x d y = 2 x + y 3 ( y + 1 ) e y               

    d x d y 2 y x = y 3 ( 1 + y ) e y . . . . . . . . . . ( i )

Equation (i) is in linear form, so I.F. = y-2

x y 2 = y e y + c 0 = e + c c = e x = e 3 ( e e 1 )                

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

 ? dxdy=x2xyx2y21

dydx=xyx2y21x2

Letxy=vxdydx+y=dvdx

Put x = 1, y = 1 tan1=cc=π4

tan1 (xy)=lnx=π4

e (y (e))=tan (1+π4)=tan1+11tan1

New answer posted

2 months ago

0 Follower 9 Views

A
alok kumar singh

Contributor-Level 10

2cos4 x – cos2x = 2(1+cos2x2)2cos2x

=1+cos22x2

22dx1+cos22x=22sec22xdx2+tan22x

=212tan1(tanx2)

now IF = ePdx

e22sec22xdx2+tan22x=etan1(tan2x2)

Solution: yetan1(tan2x2)=x.etan1(2cot2x)etan1(tan2x2)dx

yetan1(tan2x2)=x22eπ/2+C

at x=π4,y=π232,C=0

at x=π3,y=π218etan1α

yetan1(tan2π3)2=π218eπ/2

π218etan1αetan1(32)=π218eπ/2

tan-1 a + tan-1 (3/2)=π2

cot-1a = tan-1 (32)

tan-1 1α=tan1(32)

1α=3/2

2 = 23

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

 dydx=yx+y2+16x2x

Put y = Vx

differentiable worst = x

dydx=V+xdVdx

V + xdVdx=V+V2+16

xdVdx=V2+16

apply variable separable method

dVV2+16=dxx+lnC

ln|V+V2+16|=lnCx

yx+y2+16x2x=Cx

Given y(1) = 3 C = 8

Now at x = 2

y2+y2+16.42=8.2

y2 + 64 = (32 – y)2

y = 15

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.