Differential Equations

Get insights from 323 questions on Differential Equations, answered by students, alumni, and experts. You may also ask and answer any question you like about Differential Equations

Follow Ask Question
323

Questions

0

Discussions

9

Active Users

1

Followers

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

( x y 2 ) d x + y ( 5 x + y 2 ) d y = 0                

y d y d x = y 2 x 5 x + y 2            

Let y2 = t

1 2 . d t d x = t x 5 x = t  

Now substitute, t = yx

d t d x = v + x d v d x

  | ( v + 1 ) 4 ( v + 2 ) 3 | = C x

| ( y 2 + x ) 4 | = C | ( y 2 + 2 x ) 3 |    

New answer posted

2 months ago

0 Follower 2 Views

V
Vishal Baghel

Contributor-Level 10

d y d x = 2 e 2 x 6 e x + 9 2 + 9 e 2 x = e 2 x 6 e x 2 + 9 e 2 x

d y = e 2 x d x 3 e z 1 + ( 3 e x 2 ) ? p u t e x = t d x

= y = e 2 x 2 = 2 t a n 1 ( 3 e x 2 ) + C

It is given that the curve passes through

( 0 , 1 2 + π 2 2 )

3 2 e α 3 2 = e α + 9 2

e α = 9 2 + 3 2 3 2 1 = 3 2 ( 3 + 2 3 2 )

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

s i n ( 2 x 2 ) . 1 0 9 e ( t a n x 2 ) d y + 4 x y d x = 4 2 . x . ( s i n x 2 c o s π 4 c o s x 2 s i n π 4 ) d x  

l n ( t a n x 2 ) d y + 4 x s i n ( 2 x 2 ) y d x = 4 x ( s i n x 2 c o s x 2 ) s i n ( 2 x 2 ) d x

Integrate

y . l n ( t a n x 2 ) = 2 . l n ( s i n x 2 + c o s x 2 1 s i n x 2 + c o s x 2 + 1 ) + C

x = π 6 , y = 1  calculate C.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y d x y = x ,  linear differential equation.

IF = e-x

y . e x = x e x d x = e x ( x + 1 ) + C                

y = ( x + 1 ) + C . e x                

y 2 ( x ) = ( x + 1 ) + 2 e x                

y2 > y1, no solution.

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y d x + 2 x y ( 2 y 1 ) 2 x 1 = 0

x, y > 0, y(1) = 1

d y d x = 2 x ( 2 y 1 ) 2 y ( 2 x 1 )         

2 y 2 y 1 d y = 2 x 2 x 1 d x           

= l o g e ( 2 y 1 ) l o g e 2 = l o g e ( 2 x 1 ) l o g e 2 + l o g e c l o g e 2  

Taking log of base 2.

 y = 2 – log2 

New answer posted

2 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

  l = e x ( x 2 + 1 ) ( x + 1 ) 2 d x = f ( x ) e X + c

l = ? e x ( x 2 1 + 1 + 1 ) ( x + 1 ) 2 d x

  = e x [ x 1 x + 1 + 2 ( x + 1 ) 2 ] d x

 for x = 1

f ' ' ' ( 1 ) = 1 2 2 4 = 1 2 1 6 = 3 4                

New answer posted

2 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

Slope of any point P (x, y) to y = f (x) is dydx=kyx

dyy+kdxx=0

Solving the equation the curve is xky = c

It passes (1, 2) c = 2 xky = 2 again it passes (8, 1) 8k = 2 k = 13

 the equation of curve is x1/3 y = 2 …… (i)

|y (18)|=|2 (18)1/3|=4

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

d y d x + ( 2 x 2 + 1 1 x + 1 3 x 3 + 6 x 2 + 1 1 x + 6 ) y = x + 3 x + 1 , x > 1

IF = e p d x = ( x + 1 ) 2 ( x + 2 ) x + 3

P d x = 2 x 2 + 1 1 x + 1 3 x 3 + 6 x 2 + 1 1 x + 6 d n = ( 2 x + 1 + 1 x + 2 1 x + 3 ) d x

= l n ( ( x + 1 ) 2 ( x + 2 ) / ( x + 3 ) )

2 x 2 + 1 1 x + 1 3 ( x + 1 ) ( x + 2 ) ( x + 3 ) = A x + 1 + B x + 2 + C x + 3

2 x 2 + 1 1 x + 1 3 = A ( x + 2 ) ( x + 3 ) + B ( x + 1 ) ( x + 3 ) + C ( x + 1 ) ( x + 2 )

x = -1

->4 = 2A Þ A = 2

x = -2

-> -1 = -B Þ B = 1

x2 – 3 Þ -2 = 2c

c = -1

y ( x + 1 ) 2 ( x + 2 ) x + 3 = x + 3 x + 1 ( x + 1 ) 2 ( x + 2 ) x + 3 d x

= ( x + 1 ) ( x + 2 ) d x

= x 3 3 + 3 x 2 2 + 2 x + c

( 0 , 1 ) 1 2 3 = c

x = 1  y ( 3 ) = 1 3 + 3 2 + 2 + 2 3 = 3 2 + 3 = 9 2

y =  3 2

New answer posted

2 months ago

0 Follower 4 Views

V
Vishal Baghel

Contributor-Level 10

If y = y(x), x ( 0 , π 2 )  be the solution curve of the different equation

d y d x + ( 8 + 4 c o t 2 x ) y = 2 e 4 x s i n 2 2 x ( 2 s i n x + c o s 2 x )  which is a linear different equation

I.F = e ( 8 + 4 c o t 2 x ) d x = e 8 x + 2 c o s ( s i n 2 x ) = e 8 x . s i n 2 2 x

Given, y ( π 4 ) = e π c = 0

y = e 4 x s i n 2 x

y ( π 6 ) = e 4 π 6 s i n ( 2 . π 6 ) = 2 3 e 2 π 3

New answer posted

2 months ago

0 Follower 2 Views

A
alok kumar singh

Contributor-Level 10

  d y d x = x + y 2 x y  

Let x – 1 = X, y – 1 = Y

then DE: d Y d X = X + Y X Y = 1 + Y X 1 Y X  

Put y = vx

then  d Y d X = V + X d V d X  

V + X d V d X = 1 + V 1 V

X d V d X = 1 + V 1 V V

= 1 + V 2 1 V

1 V 1 + V 2 d V = d X X

V 1 V 2 + 1 d V + d X X = 0

1 2 l n | V 2 + 1 | t a n 1 V + l n | X | = c

l n ( 1 + ( Y 1 X ) 2 | X 1 | ) t a n 1 Y 1 X 1 = c

( 2 , 1 ) l n ( 1 + 0 1 ) 0 = c

c = 0  

l n ( X 1 ) 2 + ( Y 1 ) 2 = t a n 1 Y 1 X 1

point (k + 1, 2) l n k 2 + 1 = t a n 1 1 k

1 2 l n ( k 2 + 1 ) = t a n 1 1 k              

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.