Maths NCERT Exemplar Solutions Class 12th Chapter One: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter One 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter One )

Vishal Baghel
Updated on Jul 17, 2025 12:12 IST

By Vishal Baghel, Executive Content Operations

Table of contents
  • Relations and Function Question and Answers
  • JEE Mains 2022
  • JEE Mains Solutions 2022,24th june , Maths, first shift
Maths NCERT Exemplar Solutions Class 12th Chapter One Logo

Relations and Function Question and Answers

Q.1. If A = { 1 , 2 , 3 , 4 }  , define relations on  A  which have properties of being:

(a) Reflexive, transitive but not symmetric

(b) Symmetric but neither reflexive nor transitive

(c) Reflexive, symmetric and transitive.

Sol:

G i v e n t h a t :    
  A = { 1 , 2 , 3 }
a n d   R = { ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 3 ) , ( 1 , 2 ) , ( 2 , 3 ) , ( 1 , 3 ) } H e r e , 1 R 1 , 2 R 2 a n d 3 R 3 , S o , R i s r e f l e x i v e . 1 R 2 b u t 2 R 1 o r 2 R 3 b u t 3 R 2 , S o , R i s n o t s y m m e t r i c . 1 R 1 a n d 1 R 2 1 R 3 , S o , R i s t r a n s i t i v e . H e n c e , t h e c o r r e c t a n s w e r i s ( a ) .

Q.2. Let R  be a relation defined on the set of natural numbers N as follows:

R = { ( x , y ) : x N , y N , 2 x + y = 4 1 }  . Find the domain and range of the relation  R  . Also, verify whether  R  is reflexive, symmetric, and transitive.

Sol:

G i v e n t h a t x N , y N a n d 2 x + y = 4 1 D o m a i n o f R = { 1 , 2 , 3 , 4 , 5 , , 2 0 } a n d R a n g e = { 3 9 , 3 7 , 3 5 , 3 3 , 3 1 , , 1 } H e r e , ( 3 , 3 ) R a s 2 × 3 + 3 4 1 S o , R i s n o t r e f l e x i v e . R i s n o t s y m m e t r i c a s ( 2 , 3 7 ) R b u t ( 3 7 , 2 ) R R i s n o t t r a n s i t i v e a s ( 1 1 , 1 9 ) R a n d ( 1 9 , 3 ) R b u t ( 1 1 , 3 ) R . H e n c e , R i s n e i t h e r r e f l e x i v e , n o r s y m m e t r i c a n d n o r t r a n s i t i v e .

Q.3. Given A = { 2 , 3 , 4 } , B = { 2 , 5 , 6 , 7 }  , construct an example of each of the following:

(a) An injective mapping from A  to  B

(b) A mapping from A  to  B  which is not injective

(c) A mapping from B  to  A  .

Sol:

H e r e , A = { 2 , 3 , 4 } a n d B = { 2 , 5 , 6 , 7 } ( i ) L e t f : A B b e t h e m a p p i n g f r o m A t o B f = { ( x , y ) : y = x + 3 } f = { ( 2 , 5 ) , ( 3 , 6 ) , ( 4 , 7 ) } w h i c h i s a n i n j e c t i v e m a p p i n g . ( i i ) L e t g : A B b e t h e m a p p i n g f r o m A B s u c h t h a t g = { ( 2 , 5 ) , ( 3 , 5 ) , ( 4 , 2 ) } w h i c h i s n o t a n i n j e c t i v e m a p p i n g . ( i i i ) L e t h : B A b e t h e m a p p i n g f r o m B t o A h = { ( y , x ) : x = y 2 } h = { ( 5 , 3 ) , ( 6 , 4 ) , ( 7 , 3 ) } w h i c h i s t h e m a p p i n g f r o m B t o A .

Q.4. Give an example of a map:

(i) Which is one-one but not onto

(ii) Which is not one-one but onto

(iii) Which is neither one-one nor onto.

Sol:

 

Q&A Icon
Commonly asked questions
Q:  

Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.

I.   {(x,y):xisaperson,yisthemonthofx} .

II.  {(a,b):aisaperson,bisanancestorofa} .

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

(i)Given set of ordered pair is {(x,y):xisaperson,yisthemotherofx}.It represents a function.

Here, the image of distinct elements of x under f are not distinct, so it is not an injective but it is a surjective.

(ii)Set of ordered pairs = {(a,b):aisaperson,bisanancestorofa}

Here, each element of domain does not have a unique image. 

So, it does not represent function.

Q:  

If A={1,2,3,4} , define relations on A which have properties of being:

(a) reflexive, transitive but not symmetric

(b) symmetric but neither reflexive nor transitive

(c) reflexive, symmetric and transitive.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Giventhat:  
 A={1,2,3}and  R={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}Here,1R1,2R2and3R3,So,Risreflexive.1R2but2R1or2R3but3R2,So,Risnotsymmetric.1R1and1R21R3,So,Ristransitive.Hence,thecorrectansweris(a).

Q:  

Let R be a relation defined on the set of natural numbers N as follows:

R={(x,y):xN,yN,2x+y=41} . Find the domain and range of the relation R . Also, verify whether R is reflexive, symmetric, and transitive.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Given??thatxN,yNand2x+y=41DomainofR={1,2,3,4,5,,20}andRange={39,37,35,33,31,,1}Here,(3,3)Ras2×3+341So,Risnotreflexive.Risnotsymmetricas(2,37)Rbut(37,2)RRisnottransitiveas(11,19)Rand(19,3)Rbut(11,3)R.Hence,Risneitherreflexive,norsymmetricandnortransitive.

Q:  

Given A={2,3,4},B={2,5,6,7} , construct an example of each of the following:

(a) An injective mapping from A to B

(b) A mapping from A to B which is not injective

(c) A mapping from B to A .

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Here,A={2,3,4}andB={2,5,6,7}(i)Letf:ABbethemappingfromAtoBf={(x,y):y=x+3}f={(2,5),(3,6),(4,7)}whichisaninjectivemapping.(ii)Letg:ABbethemappingfromABsuchthatg={(2,5),(3,5),(4,2)}whichisnotaninjectivemapping.(iii)Leth:BAbethemappingfromBtoAh={(y,x):x=y2}h={(5,3),(6,4),(7,3)}whichisthemappingfromBtoA.

Q:  

Give an example of a map:

(i) which is one-one but not onto

(ii) which is not one-one but onto

(iii) which is neither one-one nor onto.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let A=R{3},B=R{1} . Let f:AB be defined by f(x)=x2x3xA . Then Show that f is bijective.

A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Here,AR{3},B=R{1}Giventhatf:ABdefinedbyf(x)=x2x3xA.Letx1,x2f(x)f(x1)=f(x2)x12x13=x22x23(x12)(x13)=(x22)(x23)x1=x2x1=x2So,itisinjectivefunction.Now,Lety=x2x3xy3y=x2xyx=3y2x(y1)=3y2x=3y2y1f(x)=x2x3=3y2y123y2y133y22y+23y23y+3yf(x)=yB.So,f(x)issurjectivefunction.Hence,f(x)isbijectivefunction.

Q:  

Let A=[1,1] , Then, discuss whether the following functions defined on A are one-one, onto, or bijective:

(i) f(x)=x2

(ii) g(x)=|x|

(iii) h(x)=x|x|

(iv) k(x)=x2 .

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

(i)Giventhat1x1Letx1,x2f(x)f(x1)=1x1andf(x2)=1x2f(x1)=f(x2)1x1=1x2x1=x2So,f(x)isoneonefunction.Letf(x)=y=x2x=2yFory=1,x=2[1,1]So,f(x)isnotonto.Hence,f(x)isnotbijectivefunction.(ii)Here,g(x)=|x|g(x1)=g(x2)|x1|=|x2|x1=±x2So,g(x)isnotoneonefunction.Letg(x)=y=|x|x=±yAyASo,g(x)isnotontofunction.Hence,g(x)isnotbijectivefunction.(iii)Here,h(x)=x|x|h(x1)=h(x2)x1|x1|=x2|x2|x1=x2So,h(x)isoneonefunction.Now,leth(x)=y=x|x|=x2orx2&thi

 

Q:  

Each of the following defines a relation on N :

(i) x is greater than y,x,yN

(ii) x+y=10,x,yN

(iii) xy,is square of an integer x,yN

(iv) x+4y=10,x,yN .

Determine which of the above relations are reflexive, symmetric, and transitive.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let A={1,2,3,,9} and R  be the relation in A×A defined by (a,b)R(c,d) if   a+d=b+c for (a,b),(c,d) in A×A . Prove that  R is an equivalence relation and also obtain the equivalent class [(2,5)] .

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Here,A={1,2,3,,9}andRA×Adefinedby(a,b)R(c,d)a+d=b+c(a,b),(c,d)A×AForreflexive:(a,b)R(a,b)=a+b=b+aa,bAwhichistrue.So,Risreflexive.Forsymmetric:(a,b)R(c,d)=(c,d)R(a,b)L.H.S.a+d=b+cR.H.S.c+b=d+aL.H.S.=R.H.S.So,Rissymmetric.Fortransitive:(a,b)R(c,d)=(c,d)R(e,f)(a,b)R(e,f)a+d=b+candc+f=d+ea+d=b+candd+e=c+f(a+d)(d+e)=(b+c)(c+f)ae=bfa+f=b+e(a,b)R(e,f)So,Ristransitive.Hence,Risanequivalencerelation.Equivalentclassof{(2,5)}is{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)}

Q:  

Using the definition, prove that the function f:AB is invertible if and only if f is both one-one and onto.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

Afunctionf:XYissaidtobeinvertibleifthereexistsafunctiong:YXsuchthatgof=IXandfog=IYandthentheinverseoffisdenotedbyf1.Afunctionf:XYissaidtobeinvertibleifffisabijectivefunction.

Q:  

Functions f,g:RR are defined, respectively, by f(x)=x2+3x+1 ,           g(x)=2x3 , find

(i) fg

(ii) gf

(iii) ff

(iv) gg

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

(i)fogf[(g(x)]=[g](x)2+3[(g(x)]+1=(2x3)2+3(2x3)+1=4x2+912x+6x9+1=4x26x+1(ii)gofg[f(x)]=2[x2+3x+1]3=2x2+6x+23=2x2+6x+1(iii)foff[(f(x)]=[f(x)]2+3[f(x)]+1=(x2+3x+1)2+3(x2+3x+1)+1=x4+9x2+1+6x3+6x+2x2+3x2+9x+3+1=x4+6x3+14x2+15x+5(iv)gogg[g(x)]=2[g(x)]3=2(2x3)3=4x63=4x9

Q:  

Let * be the binary operation defined on Q . Find which of the following binary operations are commutative:

(i) a*b=aba,bQ

(ii) a*b=a2+b2a,bQ

(iii) a*b=a+aba,bQ

(iv) a*b=(ab)2a,bQ .

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

(i)ab=abQa,bQ,So,isbinaryoperation.ab=abandba=baa,bQabbaSo,isnotcommutative.(ii)ab=a2+b2Q,So,isbinaryoperation.ab=baa2+b2=b2+a2a,bQWhichistrue.So,iscommutative.(iii)ab=a+abQ,So,isbinaryoperation.ab=a+abandba=b+baa+abb+baabbaa,bQ.So,isnotcommutative.(iv)ab=(ab)2Q,So,isbinaryoperation.ab=(ab)2andba=(ba)2ab=ba(ab)2=(ba)2a,bQ.So,iscommutative.

Q:  

Let * be binary operation defined on R by a*b=1+ab,a,bR . Then the operation * is:

(i) Commutative but not associative

(ii) Associative but not commutative

(iii) Neither commutative nor associative

(iv) Both commutative and associative.

Read more
A: 

This is a Long Answer Type Question as classified in NCERT Exemplar

Sol:

(i):Giventhatab=1+aba,bRandba=1+baa,bRab=ba=1+abSo,iscommutative.Nowa(bc)=(ab)ca,b,cRL.H.S.a(bc)=a(1+bc)=1+a(1+bc)=1+a+abcR.H.S.(ab)c=(1+ab)c=1+(1+ab).c=1+c+abcSo,isnotassociative.Hence,iscommutativebutnotassociative.

Q:  

Let A={a,b,c} and the relation R be defined on A as follows:

R={(a,a),(b,c),(a,b)} .

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol: R = { (a, a), (b, c), (a, b)}.

To make R as reflexive we must add (b, b) and (c, c) to R. Also, to make R as transitive we must add

(a, c) to R.

So, minimum number of ordered pair is to be added are (b, b), (c, c), (a, c).

Q:  

Kindly consider the following

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let f,g:RR be defined by f(x)=2x+1 and g(x)=x22 , xR .

Respectively then, Find gf .

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

f(x)=2x+1andg(x)=x22gof=g[f(x)]=[2x+1]22=4x2+4x+12=4x2+4x1Hence,gof=4x2+4x1.

Q:  

Let f:RR be the function defined by f(x)=2x3,xR Write f1 .

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

f (x) = 2x  3

Let  f (x)= y = 2x  3y+3=2xx=y? +32f1 (y)=y+320rf1 (x)=x+32

Q:  

If A={a,b,c,d} and the function f={(a,b),(b,d),(c,a),(d,c)} , write f1

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Given that,     A =  {a, b, c, d}

and    f =  { (a, b), (b, d), (c, a), (d, c)}

f1=  { (b, a), (d, b), (a, c), (c, d)}

Q:  

If f:RR is defined by f(x)=x23x+2 , write f(f(x)) .

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Given that f(x)=x2 3x+ 2 f{f(x)} =f(x23x+2)

= (x23x+2)2 3(x23x+2) + 2                      

=x4+ 9x2+ 4  6x3 12x+ 4x2 3x2+ 9x 6 + 2                

=x4+ 10x2 6x3 3x

Hence  f{f(x)} =x4 6x3+ 10x2 3x

Q:  

Is g={(1,1),(2,3),(3,5),(4,7)} a function? If g is described by g(x)=αx+β , then what value should be assigned to α and β .

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Given that, g = { (1, 1), (2, 3), (3, 5), (4, 7)}.

Here, each element of domain has unique image. So, g is a function.

Now given that, g (x ) = α x + β

For (1,1) g (1) = α + β

α + β = 1… (i)

For (2,3)   g (2) = 2 α + β

α + β = 3 … (ii)

From Equations. (i) and (ii),

2 (1 - β ) + β = 3

2 - 2 β + β = 3

2 - β = 3

β = - 1

If β = - 1, then α = 2

 α = 2,  β = - 1

Q:  

If the mappings f and g are given by

f={(1,2),(3,5),(4,1)} and g={(2,3),(5,1),(1,3)} , write f?g .

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Given that,
f = {(1,2),(3,5),(4,1)}

and
g = {(2,3),(5,1),(1,3)}

Now,  fog (2) = f {g(2)} = f (3) = 5

fog (5) = f {g(5)} = f (1) = 2

fog (1) = f {g(1)} = f (3) = 5

fog = {(2,5),(5,2),(1,5)}

Q:  

Let C be the set of complex numbers. Prove that the mapping f:CR given by f(z)=z,zC , is neither one-one nor onto.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

f(z)=|z|zCf(1)=|1|=1f(1)=|1|=1f(1)=f(1)But11Therefore,itisnotoneono.Now,letf(z)=y=|z|.Here,thereisno;preimageofnegativenumbers.Hence,itisnotonto.

Q:  

Let the function f:RR be defined by f(x)=cosx,xR. Show that f is neither one-one nor onto.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Givenfunction,f(x)=cosxxRLet[π2,π2]f(x)f(π2)=cos(π2)=cosπ2=0cos(π2)=cosπ2=0Butπ2π2,f(x)isnotoneone.Now,f(x)=cosx,xRisnotontoasthereisnopreimageforanyrealnumber.Whichdoesnotbelongtotheintervals[1,1],therangeofcosx.

Q:  

Let X={1,2,3} and Y={4,5} . Find whether the following subsets of X×Y are functions from X to Y or not:

I. f={(1,4),(1,5),(2,4),(3,5)}

II. g={(1,4),(2,4),(3,4)}

III. h={(1,4),(2,5),(3,5)}

IV. k={(1,4),(2,5)} .

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Giventhat, 

X={1,2,3}andY={4,5}

X ×?Y={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}

(i)f={(1,4),(1,5),(2,4),(3,5)}

fisnotafunctionbecausefhasnouniqueimage.

(ii)g={(1,4),(2,4),(3,4)}

Since,gisafunctionaseachelementofthedomainhasauniqueimage.

(iii)h={(1,4),(2,5),(3,5)}

Itisafunctionaseachelementofthedomainhasauniqueimage.

(iv)k={(1,4),(2,5)}

kisnotafunctionas3doesnothaveanyimageunderthemapping.

Q:  

If functions f:AB and g:BA satisfy g?f=IA , then show that f is one-one and g is onto.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Letx1,x2gof                                  

 gof{f(x1)}=gof{f(x2)}                             

g(x1)=g(x2)                             

 
x1 =x2

Hence,fisoneoneandgisonto.

Q:  

Let f:RR be the function defined by f(x)=12cosx,xR . Then, find the range of f .

A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

f(x)12cosx,xRRangeofcosxis[1,1]Letf(x)=y=12cosx2yycosx=1ycosx=2y1cosx=2y1y=21yNow1cosx1121y1121y1231y131y113y1therangeoff=[13,1].

Q:  

Let n be a fixed positive integer. Define a relation R in Z as follows: a,bZ,aRb if and only if ab is divisible by n . Show that R is an equivalence relation.

Read more
A: 

This is a Short Answer Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let  T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to ba,bT . Then R is:

(A) Reflexive but not transitive

(B) Transitive but not symmetric

(C) Equivalence

(D) None of these.

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

I f a = b a , b T t h e n a R a a a w h i c h i s t r u e f o r a l l a T S o , R i s r e f l e x i v e N o w , a R b a n d b R a . i . e . , a b a n d b a w h i c h i s t r u e f o r a l l a T R i s s y m m e t r i c . L e t a R b a n d b R c . a b a n d b a a c a , b , c T S o , R i s t r a n s i t i v e . H e n c e , R i s e q u i v a l e n c e r e l a t i o n . S o , t h e c o r r e c t a n s w e r i s ( c ) .

Q:  

Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is the brother of b . Then R is:

(A) Symmetric but not transitive

(B) Transitive but not symmetric

(C) Neither symmetric nor transitive

(D) Both symmetric and transitive.

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

H e r e , a R b a i s a b r o t h e r o f b . a R a a i s a b r o t h e r o f a w h i c h i s n o t t r u e . S o , R i s n o t r e f l e x i v e . a R b a i s a b r o t h e r o f b . b R a w h i c h i s n o t t r u e b e c a u s e b m a y b e s i s t e r o f a . a R b b R a S o , R i s n o t s y m m e t r i c . N o w , a R b , b R c a R c a i s t h e b r o t h e r o f b a n d b i s t h e b r o t h e r o f c . a i s a l s o t h e b r o t h e r o f c .

Q:  

The maximum number of equivalence relations on the set A={1,2,3} are

(A) 1

(B) 2

(C) 3

(D) 5

A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol: 

H e r e , A = { 1 , 2 , 3 } T h e n u m b e r o f e q u i v a l e n c e r e l a t i o n s a r e a s f o l l o w s : R 1 = { ( 1 , 1 ) , ( 1 , 2 ) , ( 2 , 1 ) , ( 2 , 3 ) , ( 1 , 3 ) } R 2 = { ( 2 , 2 ) , ( 1 , 3 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 1 , 2 ) } R 3 = { ( 3 , 3 ) , ( 1 , 2 ) , ( 2 , 3 ) , ( 1 , 3 ) , ( 3 , 2 ) } H e n c e , c o r r e c t a n s w e r i s ( d )

Q:  

If a relation R on the set {1,2,3} be defined by R={(1,2)} , then R is

(A) Reflexive

(B) Transitive

(C) Symmetric

(D) None of these.

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t : R = { ( 1 , 2 ) } a R a , ? ? s o i t i s n o t r e f l e x i v e . a R b b u t b R a , s o i t i s n o t s y m m e t y r i c . a R b a n d b R c a R c w h i c h i s t r u e . S o , R i s t r a n s i t i v e . H e n c e , c o r r e c t a n s w e r i s ( b ) .

Q:  

Let us define a relation R in R as aRb if ab . Then R is:

(A) An equivalence relation

(B) Reflexive, transitive but not symmetric

(C) Symmetric, transitive but not reflexive

(D) Neither transitive nor reflexive but symmetric

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

Here,aRbifabaRaaawhichistrue,soitisreflexive.LetaRbab,butba,sobRaRisnotsymmetric.Now,ab,bc,ac,whichistrue.So,Ristransitive.Hence,correctansweris(b).

Q:  

Let A={1,2,3} and consider the relation

R={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)} .

Then R is

(A) Reflexive but not symmetric

(B) Reflexive but not transitive

(C) Symmetric and transitive

(D) Neither symmetric, nor transitive

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol: 

G i v e n t h a t :                   A = { 1 , 2 , 3 } a n d                                       R = { ( 1 , 1 ) , ( 2 , 2 ) , ( 3, 3 ) , ( 1 , 2 ) , ( 2, 3 ) , ( 1 , 3 ) } H e r e , 1 R 1 , 2 R 2 a n d 3 R 3 , S o , R i s r e f l e x i v e . 1 R 2 b u t 2 R 1 o r 2 R 3 b u t 3 R 2 , S o , R i s n o t s y m m e t r i c . 1 R 1 a n d 1 R 2 1 R 3 , S o , R i s t r a n s i t i v e . H e n c e , t h e c o r r e c t a n s w e r i s ( a ) .

Q:  

The identity element for the binary operation * defined on Q~{0} as a*b=ab2a,bQ~{0} is

(A) 1

(B) 0

(C) 2

(D) None of these

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t : a b = a b 2 a , b Q { 0 } L e t e b e t h e i d e n t i t y e l e m e n t a e = a e 2 = a e = 2 H e n c e , t h e c o r r e c t a n s w e r i s ( c ) .

Q:  

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

(A) 720

(B) 120

(C) 0

(D) None of these

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

I f A a n d B s e t s h a v e m a n d n e l e m e n t s r e s p e c t i v e l y , t h e n t h e n u m b e r o f o n e o n e a n d o n t o m a p p i n g f r o m A t o B i s n ! i f m = n a n d 0 i f m n H e r e ,                         m = 5 a n d n = 6 5 6 S o , N u m b e r o f m a p p i n g = 0 H e n c e , t h e c o r r e c t a n s w e r i s ( c )

Q:  

Let A={1,2,3,,n} and B={a,b} . Then the number of surjections from A into B is

(A) np2

(B) 2n2

(C) 2n1

(D) None of these

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let f:RR be defined by f(x)=1xxR . Then f is

(A) One-one

(B) Onto

(C) Bijective

(D) f is not defined

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol: 

G i v e n t h a t f ( x ) = 1 x P u t t i n g x = 0 f ( x ) = 1 0 = S o , f ( x ) i s n o t d e f i n e d . H e n c e , t h e c o r r e c t a n s w e r i s ( d ) .

Q:  

Let f:RR be defined by f(x)=3x25 and g:RR by g(x)=Xx2+1 . Then g?f is

(A) 3x259x430x2+26

(B) 3x259x46x2+26

(C) 3x2x4+2x24

(D) 3x29x4+30x22

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

H e r e , f ( x ) = 3 x 2 5 a n d g ( x ) = x x 2 + 1 g o f = g o f ( x ) = g [ 3 x 2 5 ] = 3 x 2 5 ( 3 x 2 5 ) 2 + 1 = 3 x 2 5 9 x 4 + 2 5 3 0 x 2 + 1 g o f = 3 x 2 5 9 x 4 + 2 5 3 0 x 2 + 2 6 H e n c e , t h e c o r r e c t a n s w e r i s ( a ) .

Q:  

Which of the following functions from Z into Z are bijections?

(A) f(x)=x3

(B) f(x)=x+2

(C) f(x)=2x+1

(D) f(x)=x2+1

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t f : Z Z L e t x 1 , x 2 f ( x ) f ( x 1 ) = x 1 + 2 , f ( x 2 ) = x 2 + 2 f ( x 1 ) = f ( x 2 ) x 1 + 2 = x 2 + 2 x 1 = x 2 S o , f ( x ) i s o n e o n e f u n c t i o n . N o w , l e t y = x + 2 x = y 2 Z y Z S o , f ( x ) i s o n t o f u n c t i o n . f ( x ) i s b i j e c t i v e f u n c t i o n . H e n c e , t h e c o r r e c t a n s w e r i s ( b ) .

Q:  

Let f:RR be the functions defined by f(x)=x3+5 . Then f1(x) is

(A) (x+5)13

(B) (x5)13

(C) (5x)13

(D) 5x

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let f:AB and g:BC be the bijective functions. Then (gf)1 is

(A) f1g1

(B) fg

(C) g1f1

(D) gf

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let f:R{35}R be defined by f(x)=3x+25x3 . Then

(A) f1(x)=f(x)

(B) f1(x)=f(x)

(C) ff )x=-x

(D) f1(x)=119f(x)

A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = 3 x + 2 5 x 3 x 3 5 L e t y = 3 x + 2 5 x 3 y ( 5 x 3 ) = 3 x + 2 5 x y 3 y = 3 x + 2 5 x y 3 x = 2 + 3 y x ( 5 y 3 ) = 2 + 3 y x = 3 y + 2 5 y 3 f 1 ( x ) = 3 x + 2 5 x 3 f 1 ( x ) = f ( x ) H e n c e , t h e c o r r e c t a n s w e r i s ( a ) .

Q:  

Let f:[0,1][0,1] be defined by f(x)={x,if x is rational1x,if x is irrational

Then (ff)x is

(A) Constant

(B) 1+x

(C) x

(D) None of these

A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t f : [ 0 , 1 ] [ 0 , 1 ] f = f 1 S o , ( f o f ) x = x ( i d e n t i t y e l e m e n t ) H e n c e , ? ? ? t h e c o r r e c t a n s w e r i s ( c ) .

Q:  

Let f:[2,)R be the function defined by f(x)=x24x+5 . Then the range of f is

(A) ?

(B) [1,)

(C) [4,)

(D) [5,)

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let f:NR be the function defined by f(x)=2x12 and g:QR be another function defined by g(x)=x+2 . Then ((gf)
32 is

(A) 1

(B) 1

(C) 72

(D) None of these

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

H e r e , f ( x ) = 2 x 1 2 a n d g ( x ) = x + 2 g o f ( x ) = g [ f ( x ) ] = f ( x ) + 2 = 2 x 1 2 + 2 = 2 x + 3 2 g o f ( 3 2 ) = 2 × 3 2 + 3 2 = 3 H e n c e , t h e c o r r e c t a n s w e r i s ( d ) .

Q:  

Let f:RR be defined by:

Then f(1)+f(2)+f(4) is

(A) 9

(B) 14

(C) 5

(D) None of these

A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t : f ( x ) = { 2 x : x > 3 x 2 : 1 < x 3 3 x : x 1 } f ( 1 ) + f ( 2 ) + f ( 4 ) = 3 ( 1 ) + ( 2 ) 2 + 2 ( 4 ) = 3 + 4 + 8 = 9 H e n c e , t h e c o r r e c t a n s w e r i s ( a ) .

Q:  

Let f:RR be given by f(x)=tan x . Then f1(1) is

(A) π4

(B) {nπ+π4:n}

(C) Does not exist

(D) None of these

Read more
A: 

This is a Objective Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t f ( x ) = t a n x L e t f ( x ) = y = t a n x x = t a n 1 y f 1 ( x ) = t a n 1 ( x ) f 1 ( 1 ) = t a n 1 ( 1 ) f 1 ( 1 ) = t a n 1 [ t a n ( π 4 ) ] = π 4 H e n c e , t h e c o r r e c t a n s w e r i s ( a ) .

Q:  

Let the relation R be defined in  by aRb if 2a+3b=30 . Then R=________.

A: 

This is a Fill in the Blanks Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let the relation R be defined on the set  A={1,2,3,4,5} by R={(a,b):a2b2<8} . Then R is given by ________

Read more
A: 

This is a Fill in the Blanks Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let f={(1,2),(3,5),(4,1)} and g={(2,3),(5,1),(1,3)} . Then gf=______ and fg=________.

A: 

This is a Fill in the Blanks Type Question as classified in NCERT Exemplar

Sol:

Giventhat,     f={(1,2),(3,5),(4,1)}andg={(2,3),(5,1),(1,3)}

gof(1)=g{f(1)}=g(2)=3

gof(3)=g{f(3)}=g(5)=1

gof(4)=g{f(4)}=g(1)=3

gof={(1,3),(3,1),(4,3)}

fog(2)=f{g(2)}=f(3)=5

fog(5)=f{g(5)}=f(1)=2

fog(1)=f{g(1)}=f(3)=5

fog={(2,5),(5,2),(1,5)}

Q:  

Kindly consider the following

A: 

This is a Fill in the Blanks Type Question as classified in NCERT Exemplar

Q:  

If f(x)=(4(x7)3} , then f1(x)=________.

A: 

This is a Fill in the Blanks Type Question as classified in NCERT Exemplar

Sol:

f ( x ) = [ 4 ( x 7 ) 3 ] L e t y = [ 4 ( x 7 ) 3 ] ( x 7 ) 3 = 4 y x 7 = ( 4 y ) 1 3 x = ( 4 y ) 1 3 + 7 H e n c e , f 1 ( x ) = ( 4 y ) 1 3 + 7

Q:  

State True or False for the statements in each of the Exercises 6 to 14:

Let R={(3,1),(1,3),(3,3)} be a relation defined on the set A={1,2,3} . Then R is symmetric, transitive but not reflexive.

Read more
A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

Q:  

Let f:RR be the function defined by f(x)=sin(3x+2),xR . Then f is invertible.

A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

G i v e n t h a t , f ( x ) = s i n ( 3 x + 2 ) , x R f ( x ) i s n o t o n e o n e f u n c t i o n . H e n c e , t h e s t a t e m e n t i s f a l s e .

Q:  

Every relation which is symmetric and transitive is also reflexive.

A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

Q:  

An integer m is said to be related to another integer n if m is a integral multiple of n . This relation in Z  is reflexive, symmetric, and transitive.

Read more
A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

H e r e , m = k n ( w h e r e k i s a n i n t e g e r ) I f k = 1 m = n , s o z i s r e f l e x i v e . C l e a r l y z i s n o t s y m m e t r i c b u t z i s t r a n s i t i v e . H e n c e , t h e s t a t e m e n t i s f a l s e .

Q:  

Let A={0,1} and N be the set of natural numbers. Then the mapping f:NA defined by f(2n1)=0,f(2n)=1,nN , is onto.

Read more
A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

Q:  

The relation R on the set A={1,2,3} defined as R={(1,1),(1,2),(2,1),(3,3)} is reflexive, symmetric, and transitive.

Read more
A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

Q:  

The composition of functions is commutative.

A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

Q:  

The composition of functions is associative.

A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

L e t f ( x ) = 2 x , g ( x ) = x 1 a n d h ( x ) = 2 x + 3 f o { g o h ( x ) } = f o { g ( 2 x + 3 ) } = f ( 2 x + 3 1 ) = f ( 2 x + 2 ) = 2 ( 2 x + 2 ) = 4 x + 4 a n d ( f o g ) o h ( x ) = ( f o g ) { h ( x ) } = f o g ( 2 x + 3 ) = f ( 2 x + 3 1 ) = f ( 2 x + 2 ) = 2 ( 2 x + 2 ) = 4 x + 4 f o { g o h ( x ) } = ( f o g ) o h ( x ) = 4 x + 4 H e n c e , t h e s t a t e m e n t i s T r u e .

Q:  

Every function is invertible.

A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

Onlybijectivefunctionsareinvertible.Hence, thestatementis'False'.

Q:  

A binary operation on a set has always the identity element.

A: 

This is a True or False Type Question as classified in NCERT Exemplar

Sol:

' + ' i s a b i n a r y o p e r a t i o n o n t h e s e t N b u t i t h a s n o i d e n t i t y e l e m e n t . H e n c e , t h e s t a t e m e n t i s ' F a l s e ' .

Maths NCERT Exemplar Solutions Class 12th Chapter One Logo

JEE Mains 2022

JEE Mains 2022

Q&A Icon
Commonly asked questions
Q:  

The number of distinct real roots of the equation x5 (x3x2x+1) + x(3x34x22x+4)1=0 is …………..

A: 

 x8x7x6+x5+3x44x32x2+4x1=0

x7 (x1)x5 (x1)+3x3 (x1)x (x21)+2x (1x)+ (x1)=0

(x1) (x21) (x5+3x1)=0x=±1 are roots of above equation and x5 + 3x – 1 is a monotonic term hence vanishes at exactly one value of x other then 1 or 1.

 3 real roots.

Q:  

Let f : R -> R be a continuous function such that f(3x) – f(x) =. If f(8) = 7, then f(14) is equal to:

Read more
A: 

f (3x)- f (x) = x

Replace xx3f (x)f (x3)=x3

Again replace xx3f (x3)f (x32)f (x32)=x32

f (3x)f (0)=3x2puttingx=83f (8)f (0)=4f (0)=3

Also putting x = 143 in f (3x) – 3 = 3x2 F (14) – 3 = 7 f (14) = 10

Q:  

Let O be the origin and A be the point z1 = 1 + 2i. If B is the point z2, Re(z2) < 0, such that OAB is a right angled isosceles triangle with OB as hypotenuses, then which of the following is NOT true?

Read more
A: 

 z20 (1+2i)0=|OBOA|eiπ4z2= (1+2i) (1+i)=1+3iargz2=πtan13and|z2|=10

z12z2=34iarg (z12z2)=tan143|z12z2|=|2+4i+13i|=10

Q:  

If the system of linear equations.

8x + y + 4z = -=2

x + y + z = 0

λx 3y = μ

has infinitely many solutions, then the distance of the point (λ,μ12) from the plane 8x + y + 4z + 2 = 0 is

Read more
A: 

 Δ=|81411λ30|=123λ

So for λ = 4, it is having infinitely many solutions. Δx=|214011μ30| = 6 3μ=063μ=0

For μ=2 distance of  (4, 2, 12) from 8x + y + 4z + 2= 0 |3222+264+1+16|=103 units

Q:  

Let A be a 2 × 2 matrix with det(A) = 1 and det ((A+I)(Adj(A)+I))=4. Then the sum of the diagonal elements of A can be:

Read more
A: 

| (A + I) (adj A + I)| = 4 |A adj A + A + Adj A + I| = 4 | (A)I + A + adj A + I|= 4|A| = 1

|A + adj A| = 4

A= [abcd]adjA= [abcd]| (a+d)00 (a+d)|=4a+d=±2

Q:  

The odd natural number a, such that the area of the region bounded by y = 1, y = 3, x = 0, x = ya is 3643, is equal to:

Read more
A: 

Since a is a odd natural number then |13yady|=3643| (ya+1a+1)13|=36433a+1a+1=3643

a = 5

Q:  

Consider two G.P.’s. 2, 22, 23, …… and 4, 42, 43, …… of 60 and n terms respectively. If the geometric mean of all the 60 + n terms is (2)2258 , then k=1nk(nk) is equal to:

Read more
A: 

Given G.P’s 2, 22, 23, …60 term and 4, 42, 43, … of 60

Now G.M. =  (2)2258 (2, 22, 23, ....)160+n= (2)2258n=578, 20son=20

k=1nk (nk)20×20×21220×21×416=1330

Q:  

If the function f(x) = {loge(1x+x2)+loge(1+x+x2)secxcosxk},x(π2,π2){0} is continuous at x = 0, then k is equal to:

A: 

 f(x)={loge(1x+x2)+loge(1+x+x2)secxcosx,x(π2,π2){0}k,x=0 for continuity at x = 0

limx0f(x)=kk=limx0loge(1+x2+x4)secxcosx(00form)=limx0cosxloge(1+x2+x4)sin2x=1

Q:  

If f(x) = {x+a,x0|x4|,x>0andg(x)={x+1,x<0(x4)2+b,x0 are continuous on R, then (gof)(2) + (fog)(2) is equal to:

A: 

 f (x)= {x+a, x0|x4|, x>0andg (x)= {x+1, x<0 (x4)2+b, x0

?  f (x) and g (x) are continuous on R  a = 4 and b = 1 – 16 = 15

then (gof) (2) + (fog) (2) = g (2) + f (-1) = -11 + 3 = -8

Q:  

Let f(x) = {x3x2+10x7,x12x+log2(b24),x>1. Then the set of all values of b, for which f(x) has maximum value at x = 1, is:

Read more
A: 

 f (x)= {x3x2+10x7, x12x+log2 (b24), x>1

If f (x) has maximum value at x = 1 then

f (1)f (1)2+log2 (b24)11+107

log2 (b24)50<b2432

b24>0b (, 2) (2, ) ……. (i)

Andb2432b [6, 6] ……. (ii)

From (i) and (ii) we get b [6, 2) (2, 6]

Q:  

If a = limnk=1n2nn2+k2 and f(x) = 1cosx1+cosx , x  (0, 1), then:

A: 

 a=limnk=1n2nn2+k2=limn1nk=1n21+ (kn)2

a=0121+x2dx=2tan1x]01=π2

f' (a2)=2f (a2)

Q:  

Ifdydx + 2y tan x = sin x, 0 < x < π2 and y (π3) = 0, then the maximum value of y(x) is:

Read more
A: 

 dydx+2ytanx=sinx, I.F.e2tanxdx=sec2x

= cos x – 2 cos2 x= 2 (cosx14)2+18ymax=18

Q:  

A point P moves so that the sum of squares of its distances from the points (1, 2) and (2, 1) is 14. Let f(x, y) = 0 be the locus of P, which intersects the x-axis at the points A , B and the y-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to:

Read more
A: 

Let point P : (h, k)

Therefore according to question,   (h1)2+ (k2)2+ (h+2)2+ (k1)2=14

 locus of P (h, k) is x2+y2+x3y2=0

Now intersection with x – axis are x2+x2=0x=2, 1

Now intersection with y – axis are y23y2=0y=3±172

Therefore are of the quadrilateral ABCD is = 12 (|x1|+|x2|) (|y1|+|y2|)=12×3×17=3172

Q:  

Let the tangent drawn to the parabola y2= 24x at the point (α, β) is perpendicular to the line 2x + 2y = 5. Then the normal to the hyperbola x2α2y2β2=1 at the point ( α+ 4, β+ 4) does NOT pass through the point:

Read more
A: 

Any tangent to y2 = 24x at (α, β) is βy = 12 (x + α) therefore Slope = 12β

and perpendicular to 2x + 2y = 5 =>12 =β and α= 6 Hence hyperbola is x262y2122 = 1 and normal is drawn at (10, 16)

therefore equation of normal 36x10+144y16=36+144x50+y20=1 This does not pass through (15, 13) out of given option.

Q:  

The length of the perpendicular from the point (1, 2, 5) on the line passing through (1, 2, 4) and parallel to the line x + y – z = 0 = x – 2y + 3z – 5 is:

Read more
A: 

he line x + y – z = 0 = x – 2y + 3z – 5 is parallel to the vector

b=|i^j^k^111123|=(1,4,3) Equation of line through P(1, 2, 4) and parallel to bx11=y24=z43

Let N(λ+1,4λ+2,3λ+4)QN¯=(λ,4λ+4,3λ1)

QN¯ is perpendicular to b(λ,4λ+4,3λ1).(1,4,3)=0λ=12.

Hence QN¯(12,2,52)and|QN|¯=212

Q:  

Let a=αi^+j^k^andb=2i^+j^αk^,α>0. If the projection of a×b on the vector i^+2j^2k^ is 30, then equal to:

A: 

Given : a=(α,1,1)andb=(2,1,α)c=a×b=|i^j^k^α1121α|

=(α+1)i^+(α22)j^+(α2)k^ Projection of c on d=i^+2j^2k^=|c.d|d||=30{Given}

|α14+2α22α+41+4+4|=30

On solving α=132 (Rejected as > 0) and = 7

Q:  

The mean and variance of a binomial distribution are and α3 respectively. If P(X = 1) = 4243 then P(X = 4 or 5) is equal to:

Read more
A: 

Given, mean = np = . and variance = npq = α3q=13andp=23

P (X=1)=np1qn1=4243n (23)1 (13)n1=4243n=6

P (X=4or5)=6C4 (23)4 (13)2+6C5 (23)5 (13)1=1627

Q:  

Let E1, E2, E3 be three mutually exclusive events such that P(E1) = 2+3p6 , P(E3) = 2p8 and P(E3) = 1p2. If the maximum and minimum values of p are p1 and p2, then (p1 + p2) is equal to:

Read more
A: 

 02+3p61p [23, 43], 02p81p [6, 2]and01p21p [1, 1]

0<P (E1)+P (E2)+P (E3)101312p81p [23, 263] Taking intersection to all p [23, 1]

p1+p2=53

Q:  

Let S = {θ[0,2π]:82sin2θ+82cos2θ=16}. Then n(S)+θS(sec(π4+2θ)cosec(π4+2θ)) is equal to:

A: 

 S={θ[0,2π]:82sin2x+82cos2x=16}

Now apply AM GM for 82sin2x+82cos2x2(82sin2x+2cos2x)1282sin2x=82cos2x

sin2θ=cos2θ θ=π4,3π4,5π4,7π4

=4+[cosec(π2+π)+cosec(π2+3π)+cosec(π2+5π)+cosec(π2+7π)]

=42(4)=4

Q:  

 tan(2tan115+sec152+2tan118) is equal to:

A: 

 tan (2tan115+sec152+2tan118)tan (2tan115+18115×18+sec152)

=tan (tan134+tan112)=tan (tan134+12138)

=tan (tan15458)=2

Q:  

The statement ((pq))qis:

A: 

(D)

(pq)q= (pq)qis:

( (PQ)) q is equivalent to  (pq) p

Q:  

If for some q, q, r  R, not at all have same sign, one of the roots of the equation (p2+q2)x22q(p+r)x+q2+r2=0 is also a root of the equation x2 + 2x – 8 = 0, then q2+r2p2 is equal to………….

Read more
A: 

Let and are the roots of (p2+q2)x22q(p+r)x+q2+r2=0

α+β>0andαβ>0 Also, it has a common root with x2 + 2x – 8 = 0

 The common root between above two equations is 4.

16(p2+q2)8q(p+r)+q2+r2=0(16p28pq+q2)+(16q28qr+r2)=0

(4pq)2+(4qr)2=0q=4pandr=16pq2+r2p2=16p2+256p2p2=272

Q:  

The number of 5-digit natural numbers, such that the product of their digits is 36, is………

A: 

Factors of 36 = 22.32.1

Five-digit combinations can be

(1, 2, 3, 3), (1, 4, 3, 1), (1, 9, 2, 1), (1, 4, 9, 11), (1, 2, 3, 6, 1), (1, 6, 1, 1)

i.e., total numbers 5!5!2!2!+5!2!2!+5!2!2!+5!3!+5!2!+5!3!2!= (30×3)+20+60+10=180.

Q:  

The series of positive multiples of 3 is divided into sets : {3},{6,9,12},{15,18,21,24,27},...... Then the sum of the elements in the 11th set is equal to…………..

Read more
A: 

Given series  {3×1}, {3×2, 3×3, 3×4}, {3×5, 3×6, 3×7, 3×8, 3×9}.........

 11th set will have 1 + (10)2 = 21 terms

Also up to 10th set total 3 × k type terms will be 1 + 3 + 5 + ……… +19 = 100 terms

Set11= {3×101, 3×102, ......3×121}  Sum of elements = 3 × (101 + 102 + ….+121)

=3×222×212=6993.

Q:  

If the coefficients of x and x2 in the expansion of (1 + x)p (1 – x)q, p, q  15, are -3 and -5 respectively, then the coefficient of x3 is equal to…………………

Read more
A: 

Coefficient of x in (1+x)p(1x)q=pC0qC1+pC1qC0=3pq=3

Coefficient of x2 in (1+x)p(1x)q=pC0qC2pC1qC1pC2qC0=5

q(q1)2pq+p(p1)2=5q(q1)2(q3)q+(q3)(q4)2=5q=11,p=8

Coefficient of x3 in (1+x)8(1x)11=11C3+8C111C28C211C1+8C3=23

Q:  

If n(2n+1)01(1xn)2ndx=117701(1xn)2n+1 dx, then n  N is equal to………….

A: 

 011. (1xn)2n+1dx using by parts we get,

(2n2+n+1)01 (1xn)2n+1dx=117701 (1xn)2n+1dx

2n2+n+1=1177n=24or492n=24

Q:  

Let a cure y = y(x) pass through the point (3, 3) and the area of the origin under this curve, above the x-axis and between the abscissae 3 and x (>3) be (yx)3 . If the curve also passes through the point (α,610) in the first quadrant, then is equal to………….

Read more
A: 

 3xf(x)dx=(f(x)x)3x33xf(x)dx=f3(x), differentiating w.r.to x

x3f(x)+3x2f3(x)x3=3f2(x)f'(x)3y2dydx=x3y=3y3x3xydydx=x4+3y2

After solving we get y2=x43+cx2 also curve passes through (3, 3) c = -2

y2=x432x2 which passes through (α,610) α46α23=360α=6

Q:  

The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x – y = 3 respectively. If its orthocenter is (2, a), 12<a<2, then p is equal to…………

Read more
A: 

Slope of AH = a+21 slope of BC = 1pp=a+2 C (18p30p+1, 15p33p+1)

slope of HC = 16pp23116p32

slope of BC × slope of HC = -1 p = 3 or 5

hence p = 3 is only possible value.

Q:  

Let the function f(x) = 2x2 – loge x, x  > 0, be decreasing in (0, a) and increasing in (a, 4). A tangent to the parabola y2 = 4ax at a point P on it passes through the point (8a, 8a – 1) but does not pass through the point ( 1 a , 0 ) .  If the equation of the normal at P is x α + γ β = 1 ,  then a + b is equal to…………….

Read more
A: 

 f' (x)=4x2? 1x so f (x) is decreasing in  (0, 12)and? ? (12, ? ) ? a=12

Tangent at y2 = 2x is y = mx + 12m it is passing through (4, 3) therefore we get m = 12or? ? 14

So tangent may be y=12x+1? ? or? ? y=14x+2? ? ? but? ? y=12x+1 passes through (-2, 0) so rejected.

Equation of normal x9+y36=1

Q:  

Let Q and R be two points on the line x + 1 2 = y + 2 3 = z 1 2  at a distance 2 6  from the point P(4, 2, 7). Then the surface of the area of the triangle PQR is……………

Read more
A: 

Let PT perpendicular to QR

x+12=y+23=z12=λT (2λ1, 3λ2, 2λ+1) therefore

2 (2λ5)+3 (3λ4)+2 (2λ6)=0λ=2

T (3, 4, 5)PT=1+4+4=3QT=269=17

ΔPQR=12×217×3=317

Therefore square of ar (ΔPQR) = 153.

Maths NCERT Exemplar Solutions Class 12th Chapter One Logo

JEE Mains Solutions 2022,24th june , Maths, first shift

JEE Mains Solutions 2022,24th june , Maths, first shift

Q&A Icon
Commonly asked questions
Q:  

Let A = { z C : 1 | z ( 1 + i ) 2 } and B = { z A : | z ( 1 i ) | = 1 } . Then, B :

Read more
A: 

A = { z c : 1 | z ( 1 + i ) | 2 }

| z ( 1 + i ) | 1

and  | z ( 1 + i ) | 2

and also | z ( 1 i ) | = 1  

hence B has infinite set.

 

Q:  

The remainder when 32022 is divided by 5 is :

A: 

(3 * 3 * 3 * ………2022 times) ¸ 5

Remainder = (-1) (-1) (-1) ….1011 times)

Remainder = -1 + 5 = 4

Q:  

The surface area of a balloon of spherical shape being inflated increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds, it becomes 7 units, then its radius after 9 seconds is :

Read more
A: 

Surface area, S = 4pr2

? d s d t = 4 ? . 2 r d r d t = 8 ? d r d t = c o n s t a n t = k ( s a y )                

? d s d t = k ? s = k t + c

? 4 ? r 2 = k t + c        

Initially t = 0, r = 3

c = 36 p

When t = 5, r = 7, k = 32p

When t = 9, r = r, r = 9

 

Q:  

Bag A contains 2 white, 1 black and 3 red balls and bag B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random are found to be 1 red and 1 black. If the probability that both balls come from Bag A is 6 1 1 , then n is equal to ________.

Read more
A: 

  6 1 1 = Required probability         

 

After solving, we get n = 4

Q:  

Let x2 + y2 + Ax + By + C = 0 be a circle passing through (0, 6) and touching the parabola y = x2 at (2, 4). Then A + C is equal to

Read more
A: 

Equation of tangent to the circle at (2, 4) is

(4 + A) x + (8 + B) y + 2A + 2B + 2C = 0……. (i)

Also equation of tangent to parabola y = x2 at (2, 4) is

4x – y = 4 ………. (ii)

Comparing (i) and (ii) we get, A + C = 16

Q:  

The number of values of a for which the system of equations :

x + y + z = a

ax + 2ay + 3z = -1

x + 3ay + 5z = 4

is inconsistent, is

Read more
A: 

For inconsistent, Δ = 0 , | 1 1 1 α 2 a 3 1 3 α 5 | = 0

a = 1

Δ 1 = | 1 1 1 1 2 3 4 3 5 | = 1 ( 1 ) + 1 ( 1 2 + 5 ) + 1 ( 3 8 ) = 7 0              

Q:  

If the sum of the squares of the reciprocals of the roots a and b of the equation 3 x 2 + λ x 1 = 0 is 15, then 6 ( α 3 + β 3 ) 2 is equal to :

Read more
A: 

α + β = λ 3 , α β = 1 3

1 α 2 + 1 β 2 = 1 5 λ = ± 3

6 ( α 3 + β 3 ) 2 = 6 ( ( α + β ) 3 3 α β ( α + β ) ) 2 = 6 × ( ( 1 + 1 ) ) 2 = 2 4

Q:  

The set of all values of k for which ( t a n 1 x ) 3 + ( c o t 1 x ) 3 = k π 3 , x R , is the interval :

Read more
A: 

( t a n 1 x ) 3 + ( c o t 1 x ) 3 = k π 3 , x R

( t a n 1 x + c o t 1 x ) ( ( t a n 1 x + c o t 1 x ) 2 3 t a n 1 x c o t 1 x ) = k π 3

1 3 k < 7 8

Q:  

Let S = { n : 1 n 5 0 a n d n i s o d d } .

Let a S a n d A = [ 1 0 a 1 1 0 a 0 1 ] .  If a S d e t ( a d j A ) = 100l, then l is equal to :

Read more
A: 

S = { n : 1 n 5 0 & n = o d d }  

= { 1 , 3 , 5 , . . . . . . , 4 9 ( 2 5 t e r m s ) }  

| A | = | 1 0 4 1 1 0 a 0 1 | = 1 + a2

a S d e t ( a d j A ) = 1 0 0 λ ( 1 + a 2 ) 2 = 1 0 0 λ λ = 2 2 1

                

Q:  

For the function f(x) = 4 loge(x – 1) – 2x2 + 4x + 5, x > 1, which one of the following is NOT correct?

Read more
A: 

f (x) = 4loge (x – 1) -2x2 + 4x + 5, x > 1

    ( A ) f ' ( x ) = 4 x 1 4 x + 4

f ' ( x ) > 0 x ( x + 2 ) x 1 > 0

option (A) is correct.

(B) f (x) = -1, has two solution

option (B) is correct

( C ) f " ( x ) = 4 ( x 1 ) 2 4                

f ' ( e ) f " ( 2 ) = 4 e ( 2 e ) e 1 + 8 > 0              

option (C) is not correct

(D) f (e) = 4loge (e – 1) -2 (e2 – 2e + 1) + 7 > 0

f (e + 1) = 4 – 2 (e + 1)2 + 4 (e + 1) +5+ < 0

option (D) is correct   

Q:  

If the tangent at the point (x1, y1) on the curve y = x3 + 3x2 + 5 passes through the origin, then (x1, y1) does NOT lie on the curve:

Read more
A: 

f(x) =   | 2 x 2 + 3 x 2 | + s i n x c o s x

= | ( 2 x 1 ) ( x + 2 ) | + s i n x c o s x

f ( x ) = { 2 x 2 3 x + 2 + s i n x c o s x , 0 < x < 1 2 2 x 2 + 3 x 2 + s i n x c o s x , 1 2 x < 1

f ' ( x ) = { 4 x 3 + c o s 2 x , 0 < x < 1 2 4 x + 3 + c o s 2 x , 1 2 x < 1            

 f(1) = 3 + sin 1 cos 1 and   f(12)=sin12cos12

f ( 1 ) + f ( 1 2 ) = 3 + s i n 2 2 + s i n 1 2 = 3 + 1 2 ( s i n 1 + s i n 2 )

= 3 + s i n 1 2 ( 1 + 2 c o s 1 )

 

Q:  

The sum of absolute maximum and absolute minimum values of the function f(x) = |2x2 + 3x + 2| + sin x cos x in the interval [0, 1] is :

Read more
A: 

f(x) =   | 2 x 2 + 3 x ? 2 | + s i n x c o s x

= | ( 2 x ? 1 ) ( x + 2 ) | + s i n x c o s x

f ( x ) = { ? 2 x 2 ? 3 x + 2 + s i n x c o s x , 0 < x < 1 2 2 x 2 + 3 x ? 2 + s i n x c o s x , 1 2 ? x < 1

f ' ( x ) = { ? 4 x ? 3 + c o s 2 x , 0 < x < 1 2 4 x + 3 + c o s 2 x , 1 2 ? x < 1            

 f(1) = 3 + sin 1 cos 1 and   f(12)=sin12cos12

? f ( 1 ) + f ( 1 2 ) = 3 + s i n 2 2 + s i n 1 2 = 3 + 1 2 ( s i n 1 + s i n 2 )

= 3 + s i n 1 2 ( 1 + 2 c o s 1 )

 

Q:  

If { a i } i = 1 n , where n is an even integer, is an arithmetic progression with common difference 1, and i = 1 n a i = 1 9 2 , then n is equal to :

Read more
A: 

  i = 1 n a i = 1 9 2 a 1 + a 2 + a 3 + . . . . . . + a n = 1 9 2

n ( a 1 + a n ) = 3 8 4 . . . . . . . . . . . . . . ( i )

and i = 1 n / 2 a 2 i = 1 2 0 a 2 + a 4 + a 6 + . . . . . . + a n = 1 2 0  

 n (a2 + an) = 480 ……………… (ii)

n (a2 – a1) = 96

n = 9 6

Q:  

If x = x(y) is the solution of the differential equation y d x d y = 2 x + y 3 ( y + 1 ) e y , x ( 1 ) = 0 ; then x(e) is equal to :

Read more
A: 

  y d x d y = 2 x + y 3 ( y + 1 ) e y               

    d x d y 2 y x = y 3 ( 1 + y ) e y . . . . . . . . . . ( i )

Equation (i) is in linear form, so I.F. = y-2

x y 2 = y e y + c 0 = e + c c = e x = e 3 ( e e 1 )                

Q:  

Let lx – 2y = µ be a tangent to the hyperbola a 2 x 2 y 2 = b 2 . Then ( λ a ) 2 ( μ b ) 2 is equal to

Read more
A: 

λ x 2 y = μ . . . . . . . . ( i ) a n d x 2 ( b 2 a 2 ) y 2 b 2 = 1 . . . . . . . . . ( i i )

Let (x1, y1) be a point on the curve equation of tangent of eq (ii)

  y = m x ± b 2 a 2 m 2 b 2 . . . . . . . . . . ( i i i )

From (i) and (ii) are identical

m = λ 2 a n d b 2 a 2 m 2 b 2 = μ 2 4               

b 2 a 2 × λ 2 4 b 2 = μ 2 4

( λ a ) 2 ( μ b ) 2 = 4

        

               

Q:  

Let a ^ , b ^ and be unit vectors. If c ^ be vector such that the angle between a ^ a n d c i s π 1 2 , and b ^ = c + 2 ( c × a ^ ) , then | 6 c | 2 is equal to :

Read more
A: 

| a ^ | = 1 , | b ^ | = 1

| b ^ | 2 = | c + 2 ( c × a ^ ) | 2

1 = | c | 2 + 4 | c | 2 ( 3 1 2 2 ) 2

| c | 2 [ 1 + 4 × ( 3 1 ) 2 8 ] = | c | 2 ( 3 3 )

| c | 2 = 1 3 3 = 3 + 3 6

| 6 c | 2 = 6 ( 3 + 3 )

Q:  

If a random variable X follows the Binomial distribution B (33, p) such that 3P (X = 0) = P (X = 1) then the value of P ( X = 1 5 ) P ( X = 1 8 ) P ( X = 1 6 ) P ( X = 1 7 ) is equal to :L

Read more
A: 

n = 33, p = success, q = failure

3P (x = 0) = P (x = 1)

3 3 C 0 p 0 q 3 3 = 3 3 C 1 p q 3 2            

p = 1 1 2 , q = 1 1 1 2 q p = 1 1          

………. (i)

Subtracting, (ii) – (i), we get 1320

 

Q:  

The domain of the function f(x) = c o s 1 ( x 2 5 x + 6 x 2 9 ) l o g e ( x 2 3 x + 2 ) is :

Read more
A: 

x 2 5 x + 6 x 2 9 1 & x 2 5 x + 6 x 2 9 1

2 x + 1 x + 3 0 , x 3 & 1 x + 3 0 , x 3 x > 3

x [ 1 2 , ] . . . . . . . . . . . ( i )

x 2 3 x + 2 > 0 a n d x 2 3 x + 1 0

(x – 2) (x – 1) > 0 and x 3 ± 5 2

x ( , 1 ) ( 2 , ) { 3 ± 5 2 }

From (i) and (ii)   x [ 1 2 , 1 ) ( 2 , ) { 3 ± 5 2 }

 

Q:  

Let S =  { θ [ π , π ] { ± π 2 } : s i n θ t a n θ + t a n θ = s i n 2 θ } . If θ S c o s 2 θ , then T = n(S) is equal to

Read more
A: 

  s i n θ s i n θ c o s θ + s i n θ c o s θ = 2 s i n θ c o s θ

s i n θ c o s θ [ s i n θ + 1 ] = 2 s i n θ c o s θ            

sinθ = 0 and 1 + sin θ = 2 cos2 θ = 2 – 2 sin2 θ ………….(i)

θ = np

θ = -p, p, 0

From (i), 2 sin2 θ + sin θ - 1 = 0

(2 sin θ - 1) (sin θ + 1) = 0

sin θ = -1, 1 2  

θ = 3 π 2 , θ = π 6 , 5 π 6           

θ = 3 π 2 is rejected.

T = cos (-2p) + cos 2p + cos θ + cos π 3 + c o s 5 π 3 = 4  

T + n(s) = 4 + 5 = 9

Q:  

The number of choices for Δ { , , , } , such that ( p Δ q ) ( ( p Δ ~ q ) ( ~ p ) Δ q ) is a tautology, is :

Read more
A: 

( p Δ q ) ( p Δ q ) ( p Δ q )

Case I

When  Δ  is same as .  

Then  ( p Δ q ) ( p Δ q ) becomes

( p q ) ( p q ) which is always true, so x becomes tautology.

Case II

When  Δ  is same as  

Then  ( p q ) ( p q ) ( p q )  becomes p q is T, then ( p q ) ( p q ) is false, so x cannot be tautology.

Case III

When  Δ  is same as  

Then  ( p q ) ( p q ) is same as ( p q ) ( p q ) which is true, so x becomes tautology.

Case IV

When  Δ is same as  

Then   ( p q ) ( p q ) ( p q )

p q is true when p and q have same truth values p q a n d p q  both are false. Hence x cannot be tautology.

Q:  

The number of one-one functions f:{a, b, c, d} ® {0, 1, 2, ……., 10} such that 2f (a) – f(b) + 3f(c) + f(d) = 0 is ___________.

Read more
A: 

f(b) = 2f(a) + 3f(c) + f(d)

Value of f(c)       Value of f(a)      Number of functions

                                                      1            7        

                                                      2            5           

                         0                           3            3           

                                                      4            2           

                                                      0             6

                         1                           2             2           

                                                      3             1

                         2                           0              3

                                                      1              1

                         3                           0               1

                           Total number of function   31

Q:  

In an examination, there are 5 multiple choice questions with 3 choices, out of which exactly one is correct. There are 3 marks for each correct answer, -2 marks for each wrong answer and 0 mark if the question is not attempted. Then, the number of ways a student appearing in the examination gets 5 marks is __________

Read more
A: 

Let x = correct answer, y = incorrect answer

  3 x 2 y = 5 , x + y 5 , x , y w              

 only possible (x, y) is (3, 2)

Required number of ways = 

 

Q:  

Let A ( 3 a , a ) , a > 0 , be a fixed point in the xy-plane. The image of A in y-axis be B and the image of B in x-axis be C. If D (3 cos q, a sin q) is a point in the fourth quadrant such that the maximum area of Δ A C D is 12 square units, then a is equal to _________.

Read more
A: 

B ( 3 a , a ) a n d c ( 3 a , a )

A r e a o f Δ A C D = 1 2 | 3 a a 1 3 a a 1 3 c o s θ a s i n θ 1 |  = 12 

Δ = 3 a | c o s θ + s i n θ | = 1 2

Δ m a x = 3 a . 2 = 1 2 a = 8

               

Q:  

Let a line having direction ratios 1, -4, 2 intersect the lines x 7 3 = y 1 1 = z + 2 1 and x 2 = y 7 3 = z 1 at the points A and B. Then (AB)2 is equal to _________.

Read more
A: 

  x 7 3 = y 1 1 = z + 2 1 = r 1

A ( 3 r 1 + 7 , 1 r 1 , 2 + r 1 )

and   x 2 = y 7 3 = z 1 = r 2  

  B ( 2 r 2 , 7 + 3 r 2 , r 2 )

A / q , 3 r 1 2 r 2 + 7 1 = 3 r 2 + r 1 + 6 4 = r 1 r 2 2 2             

  r 1 = 5 , r 2 = 3

A ( 8 , 6 , 7 ) a n d B ( 6 , 2 , 3 )

AB2 = 84

  f ( x ) = { | 2 x 2 3 x 7 | , x 1 [ 4 x 2 1 ] , 1 < x < 1 | x + 1 | + | x 2 | , x 1              

f(-1) = 1

f(1) = 3

Hence f(x) will be discontinuous at x = 1 and also 4x2 – 1 = 0 , 1 , 2

x = ± 1 2 , ± 1 2 , ± 3 2          

Q:  

The number of points where the function f(x) = { | 2 x 2 3 x 7 | i f x 1 [ 4 x 2 1 ] i f 1 < x < 1 | x + 1 | + | x 2 | i f x 1 [t] denotes the greatest integer   t is discontinuous is __________-.

Read more
A: 

y = 2 | x 2 3 2 x 7 2 |

= 2 | ( x 3 4 ) 2 6 5 1 6 |

Q:  

Let f (θ) = s i n θ + π 2 π 2 ( s i n θ + t c o s θ ) f ( t ) d t . Then the value of | 0 π 2 f ( θ ) d θ | is

Read more
A: 

  f ( θ ) = s i n θ + π 2 π 2 ( s i n θ + t c o s θ ) f ( t ) d t

= s i n θ + s i n θ π 2 π 2 f ( t ) d t + c o s θ π 2 π 2 t f ( t ) d t

  = ( 1 + π 2 π 2 f ( t ) d t ) s i n θ + ( π 2 π 2 t f ( t ) d t ) c o s θ              

f(q) = a sin q + b cos q

  a = 1 + π 2 π 2 f ( t ) d t = 1 + π 2 π 2 ( a s i n t + b c o s t ) d t

a = 2 b + 1 . . . . . . . . . . ( i )

b = π 2 π 2 t f ( t ) d t = π 2 π 2 ( a s i n t + b c o s t ) d t

 Solving (i) & (ii) we get a =   1 3 , b = 2 3

    | 0 π 2 f ( θ ) d θ | = 1           

Q:  

Let M a x 0 x 2 { 9 x 2 5 x } = α a n d M i n 0 x 2 = { 9 x 2 5 x } = β  

If β 8 3 2 α 1 M a x { 9 x 2 5 x , x } d x = α 1 + α 2 l o g e ( 8 1 5 ) then α 1 + α 2 is equal to __________.

Read more
A: 

Let f(x) = x 2 9 x 5  

  f ' ( x ) = 2 x ( x 5 ) ( x 2 9 ) ( x 5 ) 2

= x 2 1 0 x + 9 ( x 5 ) 2 = ( x 1 ) ( x 9 ) ( x 5 ) 2

α = f ( 1 ) = 2 , β = { f ( 0 ) , f ( 2 ) } = 5 3

1 3 m a x { x 2 9 x 5 , x } d x + [ x 2 2 ] 9 / 5 3           

a1 = 18, a2 = 16

a1 + a2 = 34

Q:  

If two tangents drawn from a point (a, b) lying on the ellipse 25x2 + 4y2 = 1 to the parabola y2 = 4x are such that the slope of one tangent is four times the other, then the value of ( 1 0 α + 5 ) 2 + ( 1 6 β 2 + 5 0 ) 2 equals __________.

Read more
A: 

x 2 1 2 5 + y 2 1 4 = 1      

2 5 α 2 + 4 β 2 = 1 . . . . . . . . . . ( i )

Equation of tangent to parabola y = mx + 1 m  passes

though (a, b)

α m 2 β m + 1 = 0

m 1 + m 2 = β α , 4 m 1 2 = 1 α

f r o m ( i ) & ( i i )

25(a2 +  a) = 1 …………(iii)

( 1 0 α + 5 ) 2 + ( 1 6 β 2 + 5 0 ) 2 = 2 9 2 9

a = 1 + 0 + b ( s i n π 2 ) π 2 + 2 b + 1           

               

Q:  

Let S be the region bonded by the curves y = x3 and y2 = x. The curve y = 2|x| divides S into two regions of areas R1, and R2 _________.

If max {R1, R2} = R2, then R 2 R 1  is equal to _________.

Read more
A: 

R 2 = 0 1 ( x x 3 ) d x = ( x 2 2 x 4 4 ) 0 1 = 1 2 1 4 = 1 4

R 1 = 0 1 4 ( x 2 x ) d x = ( 2 x 3 / 2 3 x 2 ) 0 1 4 = 1 1 2 1 1 6
= 4 3 4 8 = 1 4 8
R 1 + R 2 = 0 1 ( x x 3 ) d x = ( 2 x 3 / 2 3 x 4 4 ) 0 1 = 2 3 1 4 = 5 1 2
R 1 + R 2 R 1 = 1 + R 2 R 1 = 5 1 2 1 4 8 = 2 0 R 2 R 1 = 1 9
 

 

Q:  

If the shortest distance between the lines r = ( i ^ + 3 k ^ ) + λ ( i ^ a j ^ ) a n d r = ( j ^ + 2 k ^ ) + μ ( i ^ j ^ + k ^ ) is 2 3 , then the integral value of ‘a’ is equal to __________.

Read more
A: 

b 1 × b 2 = | i ^ j ^ k ^ 1 a 0 1 1 1 | = a i ^ j ^ + ( a 1 ) k ^

a 1 a 2 = i ^ + j ^ + k ^

Shortest distance = | ( a 1 a 2 ) . ( b 1 × b 2 ) | b 1 × b 2 | |

= 2 ( a 1 ) a 2 + 1 + ( a + 1 ) 2 = 2 3 = 4 ( a 1 ) 2 a 2 + 1 + ( a 1 ) 2 = 2 3

1 2 ( a 1 ) 2 = 2 ( a 2 + 1 ) + 2 ( a 1 ) 2

1 0 ( a 1 ) 2 = 2 ( a 2 + 1 )

5 a 2 1 0 a + 5 = a 2 + 1 4 a 2 1 0 a + 4 = 0

2 a 2 5 a + 2 = 0

( 2 a 1 ) ( a 2 ) = 0

a = 1 2 , 2

qna

Maths NCERT Exemplar Solutions Class 12th Chapter One Exam

Student Forum

chatAnything you would want to ask experts?
Write here...