Maths NCERT Exemplar Solutions Class 12th Chapter One: Overview, Questions, Preparation

Maths NCERT Exemplar Solutions Class 12th Chapter One 2025 ( Maths NCERT Exemplar Solutions Class 12th Chapter One )

Vishal Baghel
Updated on Jul 17, 2025 12:12 IST

By Vishal Baghel, Executive Content Operations

Table of content
  • Relations and Function Question and Answers
  • JEE Mains 2022
  • JEE Mains Solutions 2022,24th june , Maths, first shift
Maths NCERT Exemplar Solutions Class 12th Chapter One Logo

Relations and Function Question and Answers

Q.1. If A = { 1 , 2 , 3 , 4 }  , define relations on  A  which have properties of being:

(a) Reflexive, transitive but not symmetric

(b) Symmetric but neither reflexive nor transitive

(c) Reflexive, symmetric and transitive.

Sol:

G i v e n t h a t :    
  A = { 1 , 2 , 3 }
a n d   R = { ( 1 , 1 ) , ( 2 , 2 ) , ( 3 , 3 ) , ( 1 , 2 ) , ( 2 , 3 ) , ( 1 , 3 ) } H e r e , 1 R 1 , 2 R 2 a n d 3 R 3 , S o , R i s r e f l e x i v e . 1 R 2 b u t 2 R 1 o r 2 R 3 b u t 3 R 2 , S o , R i s n o t s y m m e t r i c . 1 R 1 a n d 1 R 2 1 R 3 , S o , R i s t r a n s i t i v e . H e n c e , t h e c o r r e c t a n s w e r i s ( a ) .

Q.2. Let R  be a relation defined on the set of natural numbers N as follows:

R = { ( x , y ) : x N , y N , 2 x + y = 4 1 }  . Find the domain and range of the relation  R  . Also, verify whether  R  is reflexive, symmetric, and transitive.

Sol:

G i v e n t h a t x N , y N a n d 2 x + y = 4 1 D o m a i n o f R = { 1 , 2 , 3 , 4 , 5 , , 2 0 } a n d R a n g e = { 3 9 , 3 7 , 3 5 , 3 3 , 3 1 , , 1 } H e r e , ( 3 , 3 ) R a s 2 × 3 + 3 4 1 S o , R i s n o t r e f l e x i v e . R i s n o t s y m m e t r i c a s ( 2 , 3 7 ) R b u t ( 3 7 , 2 ) R R i s n o t t r a n s i t i v e a s ( 1 1 , 1 9 ) R a n d ( 1 9 , 3 ) R b u t ( 1 1 , 3 ) R . H e n c e , R i s n e i t h e r r e f l e x i v e , n o r s y m m e t r i c a n d n o r t r a n s i t i v e .

Q.3. Given A = { 2 , 3 , 4 } , B = { 2 , 5 , 6 , 7 }  , construct an example of each of the following:

(a) An injective mapping from A  to  B

(b) A mapping from A  to  B  which is not injective

(c) A mapping from B  to  A  .

Sol:

H e r e , A = { 2 , 3 , 4 } a n d B = { 2 , 5 , 6 , 7 } ( i ) L e t f : A B b e t h e m a p p i n g f r o m A t o B f = { ( x , y ) : y = x + 3 } f = { ( 2 , 5 ) , ( 3 , 6 ) , ( 4 , 7 ) } w h i c h i s a n i n j e c t i v e m a p p i n g . ( i i ) L e t g : A B b e t h e m a p p i n g f r o m A B s u c h t h a t g = { ( 2 , 5 ) , ( 3 , 5 ) , ( 4 , 2 ) } w h i c h i s n o t a n i n j e c t i v e m a p p i n g . ( i i i ) L e t h : B A b e t h e m a p p i n g f r o m B t o A h = { ( y , x ) : x = y 2 } h = { ( 5 , 3 ) , ( 6 , 4 ) , ( 7 , 3 ) } w h i c h i s t h e m a p p i n g f r o m B t o A .

Q.4. Give an example of a map:

(i) Which is one-one but not onto

(ii) Which is not one-one but onto

(iii) Which is neither one-one nor onto.

Sol:

 

Q&A Icon
Commonly asked questions
Q:  

Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.

I.   {(x,y):xisaperson,yisthemonthofx} .

II.  {(a,b):aisaperson,bisanancestorofa} .

Read more
Q:  

If A={1,2,3,4} , define relations on A which have properties of being:

(a) reflexive, transitive but not symmetric

(b) symmetric but neither reflexive nor transitive

(c) reflexive, symmetric and transitive.

Read more
Q:  

Let R be a relation defined on the set of natural numbers N as follows:

R={(x,y):xN,yN,2x+y=41} . Find the domain and range of the relation R . Also, verify whether R is reflexive, symmetric, and transitive.

Read more
Q:  

Given A={2,3,4},B={2,5,6,7} , construct an example of each of the following:

(a) An injective mapping from A to B

(b) A mapping from A to B which is not injective

(c) A mapping from B to A .

Read more
Q:  

Give an example of a map:

(i) which is one-one but not onto

(ii) which is not one-one but onto

(iii) which is neither one-one nor onto.

Read more
Q:  

Let A=R{3},B=R{1} . Let f:AB be defined by f(x)=x2x3xA . Then Show that f is bijective.

Q:  

Let A=[1,1] , Then, discuss whether the following functions defined on A are one-one, onto, or bijective:

(i) f(x)=x2

(ii) g(x)=|x|

(iii) h(x)=x|x|

(iv) k(x)=x2 .

Read more
Q:  

Each of the following defines a relation on N :

(i) x is greater than y,x,yN

(ii) x+y=10,x,yN

(iii) xy,is square of an integer x,yN

(iv) x+4y=10,x,yN .

Determine which of the above relations are reflexive, symmetric, and transitive.

Read more
Q:  

Let A={1,2,3,,9} and R  be the relation in A×A defined by (a,b)R(c,d) if   a+d=b+c for (a,b),(c,d) in A×A . Prove that  R is an equivalence relation and also obtain the equivalent class [(2,5)] .

Read more
Q:  

Using the definition, prove that the function f:AB is invertible if and only if f is both one-one and onto.

Read more
Q:  

Functions f,g:RR are defined, respectively, by f(x)=x2+3x+1 ,           g(x)=2x3 , find

(i) fg

(ii) gf

(iii) ff

(iv) gg

Read more
Q:  

Let * be the binary operation defined on Q . Find which of the following binary operations are commutative:

(i) a*b=aba,bQ

(ii) a*b=a2+b2a,bQ

(iii) a*b=a+aba,bQ

(iv) a*b=(ab)2a,bQ .

Read more
Q:  

Let * be binary operation defined on R by a*b=1+ab,a,bR . Then the operation * is:

(i) Commutative but not associative

(ii) Associative but not commutative

(iii) Neither commutative nor associative

(iv) Both commutative and associative.

Read more
Q:  

Let A={a,b,c} and the relation R be defined on A as follows:

R={(a,a),(b,c),(a,b)} .

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.

Read more
Q:  

Kindly consider the following

Q:  

Let f,g:RR be defined by f(x)=2x+1 and g(x)=x22 , xR .

Respectively then, Find gf .

Read more
Q:  

Let f:RR be the function defined by f(x)=2x3,xR Write f1 .

Q:  

If A={a,b,c,d} and the function f={(a,b),(b,d),(c,a),(d,c)} , write f1

Q:  

If f:RR is defined by f(x)=x23x+2 , write f(f(x)) .

Q:  

Is g={(1,1),(2,3),(3,5),(4,7)} a function? If g is described by g(x)=αx+β , then what value should be assigned to α and β .

Read more
Q:  

If the mappings f and g are given by

f={(1,2),(3,5),(4,1)} and g={(2,3),(5,1),(1,3)} , write f?g .

Q:  

Let C be the set of complex numbers. Prove that the mapping f:CR given by f(z)=z,zC , is neither one-one nor onto.

Read more
Q:  

Let the function f:RR be defined by f(x)=cosx,xR. Show that f is neither one-one nor onto.

Read more
Q:  

Let X={1,2,3} and Y={4,5} . Find whether the following subsets of X×Y are functions from X to Y or not:

I. f={(1,4),(1,5),(2,4),(3,5)}

II. g={(1,4),(2,4),(3,4)}

III. h={(1,4),(2,5),(3,5)}

IV. k={(1,4),(2,5)} .

Read more
Q:  

If functions f:AB and g:BA satisfy g?f=IA , then show that f is one-one and g is onto.

Read more
Q:  

Let f:RR be the function defined by f(x)=12cosx,xR . Then, find the range of f .

Q:  

Let n be a fixed positive integer. Define a relation R in Z as follows: a,bZ,aRb if and only if ab is divisible by n . Show that R is an equivalence relation.

Read more
Q:  

Let  T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to ba,bT . Then R is:

(A) Reflexive but not transitive

(B) Transitive but not symmetric

(C) Equivalence

(D) None of these.

Read more
Q:  

Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is the brother of b . Then R is:

(A) Symmetric but not transitive

(B) Transitive but not symmetric

(C) Neither symmetric nor transitive

(D) Both symmetric and transitive.

Read more
Q:  

The maximum number of equivalence relations on the set A={1,2,3} are

(A) 1

(B) 2

(C) 3

(D) 5

Q:  

If a relation R on the set {1,2,3} be defined by R={(1,2)} , then R is

(A) Reflexive

(B) Transitive

(C) Symmetric

(D) None of these.

Read more
Q:  

Let us define a relation R in R as aRb if ab . Then R is:

(A) An equivalence relation

(B) Reflexive, transitive but not symmetric

(C) Symmetric, transitive but not reflexive

(D) Neither transitive nor reflexive but symmetric

Read more
Q:  

Let A={1,2,3} and consider the relation

R={(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)} .

Then R is

(A) Reflexive but not symmetric

(B) Reflexive but not transitive

(C) Symmetric and transitive

(D) Neither symmetric, nor transitive

Read more
Q:  

The identity element for the binary operation * defined on Q~{0} as a*b=ab2a,bQ~{0} is

(A) 1

(B) 0

(C) 2

(D) None of these

Read more
Q:  

If the set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is

(A) 720

(B) 120

(C) 0

(D) None of these

Read more
Q:  

Let A={1,2,3,,n} and B={a,b} . Then the number of surjections from A into B is

(A) np2

(B) 2n2

(C) 2n1

(D) None of these

Read more
Q:  

Let f:RR be defined by f(x)=1xxR . Then f is

(A) One-one

(B) Onto

(C) Bijective

(D) f is not defined

Read more
Q:  

Let f:RR be defined by f(x)=3x25 and g:RR by g(x)=Xx2+1 . Then g?f is

(A) 3x259x430x2+26

(B) 3x259x46x2+26

(C) 3x2x4+2x24

(D) 3x29x4+30x22

Read more
Q:  

Which of the following functions from Z into Z are bijections?

(A) f(x)=x3

(B) f(x)=x+2

(C) f(x)=2x+1

(D) f(x)=x2+1

Read more
Q:  

Let f:RR be the functions defined by f(x)=x3+5 . Then f1(x) is

(A) (x+5)13

(B) (x5)13

(C) (5x)13

(D) 5x

Read more
Q:  

Let f:AB and g:BC be the bijective functions. Then (gf)1 is

(A) f1g1

(B) fg

(C) g1f1

(D) gf

Read more
Q:  

Let f:R{35}R be defined by f(x)=3x+25x3 . Then

(A) f1(x)=f(x)

(B) f1(x)=f(x)

(C) ff )x=-x

(D) f1(x)=119f(x)

Q:  

Let f:[0,1][0,1] be defined by f(x)={x,if x is rational1x,if x is irrational

Then (ff)x is

(A) Constant

(B) 1+x

(C) x

(D) None of these

Q:  

Let f:[2,)R be the function defined by f(x)=x24x+5 . Then the range of f is

(A) ?

(B) [1,)

(C) [4,)

(D) [5,)

Read more
Q:  

Let f:NR be the function defined by f(x)=2x12 and g:QR be another function defined by g(x)=x+2 . Then ((gf)
32 is

(A) 1

(B) 1

(C) 72

(D) None of these

Read more
Q:  

Let f:RR be defined by:

Then f(1)+f(2)+f(4) is

(A) 9

(B) 14

(C) 5

(D) None of these

Q:  

Let f:RR be given by f(x)=tan x . Then f1(1) is

(A) π4

(B) {nπ+π4:n}

(C) Does not exist

(D) None of these

Read more
Q:  

Let the relation R be defined in  by aRb if 2a+3b=30 . Then R=________.

Q:  

Let the relation R be defined on the set  A={1,2,3,4,5} by R={(a,b):a2b2<8} . Then R is given by ________

Read more
Q:  

Let f={(1,2),(3,5),(4,1)} and g={(2,3),(5,1),(1,3)} . Then gf=______ and fg=________.

Q:  

Kindly consider the following

Q:  

If f(x)=(4(x7)3} , then f1(x)=________.

Q:  

State True or False for the statements in each of the Exercises 6 to 14:

Let R={(3,1),(1,3),(3,3)} be a relation defined on the set A={1,2,3} . Then R is symmetric, transitive but not reflexive.

Read more
Q:  

Let f:RR be the function defined by f(x)=sin(3x+2),xR . Then f is invertible.

Q:  

Every relation which is symmetric and transitive is also reflexive.

Q:  

An integer m is said to be related to another integer n if m is a integral multiple of n . This relation in Z  is reflexive, symmetric, and transitive.

Read more
Q:  

Let A={0,1} and N be the set of natural numbers. Then the mapping f:NA defined by f(2n1)=0,f(2n)=1,nN , is onto.

Read more
Q:  

The relation R on the set A={1,2,3} defined as R={(1,1),(1,2),(2,1),(3,3)} is reflexive, symmetric, and transitive.

Read more
Q:  

The composition of functions is commutative.

Q:  

The composition of functions is associative.

Q:  

Every function is invertible.

Q:  

A binary operation on a set has always the identity element.

Maths NCERT Exemplar Solutions Class 12th Chapter One Logo

JEE Mains 2022

JEE Mains 2022

Q&A Icon
Commonly asked questions
Q:  

The number of distinct real roots of the equation x5 (x3x2x+1) + x(3x34x22x+4)1=0 is …………..

Q:  

Let f : R -> R be a continuous function such that f(3x) – f(x) =. If f(8) = 7, then f(14) is equal to:

Read more
Q:  

Let O be the origin and A be the point z1 = 1 + 2i. If B is the point z2, Re(z2) < 0, such that OAB is a right angled isosceles triangle with OB as hypotenuses, then which of the following is NOT true?

Read more
Q:  

If the system of linear equations.

8x + y + 4z = -=2

x + y + z = 0

λx 3y = μ

has infinitely many solutions, then the distance of the point (λ,μ12) from the plane 8x + y + 4z + 2 = 0 is

Read more
Q:  

Let A be a 2 × 2 matrix with det(A) = 1 and det ((A+I)(Adj(A)+I))=4. Then the sum of the diagonal elements of A can be:

Read more
Q:  

The odd natural number a, such that the area of the region bounded by y = 1, y = 3, x = 0, x = ya is 3643, is equal to:

Read more
Q:  

Consider two G.P.’s. 2, 22, 23, …… and 4, 42, 43, …… of 60 and n terms respectively. If the geometric mean of all the 60 + n terms is (2)2258 , then k=1nk(nk) is equal to:

Read more
Q:  

If the function f(x) = {loge(1x+x2)+loge(1+x+x2)secxcosxk},x(π2,π2){0} is continuous at x = 0, then k is equal to:

Q:  

If f(x) = {x+a,x0|x4|,x>0andg(x)={x+1,x<0(x4)2+b,x0 are continuous on R, then (gof)(2) + (fog)(2) is equal to:

Q:  

Let f(x) = {x3x2+10x7,x12x+log2(b24),x>1. Then the set of all values of b, for which f(x) has maximum value at x = 1, is:

Read more
Q:  

If a = limnk=1n2nn2+k2 and f(x) = 1cosx1+cosx , x  (0, 1), then:

Q:  

Ifdydx + 2y tan x = sin x, 0 < x < π2 and y (π3) = 0, then the maximum value of y(x) is:

Read more
Q:  

A point P moves so that the sum of squares of its distances from the points (1, 2) and (2, 1) is 14. Let f(x, y) = 0 be the locus of P, which intersects the x-axis at the points A , B and the y-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to:

Read more
Q:  

Let the tangent drawn to the parabola y2= 24x at the point (α, β) is perpendicular to the line 2x + 2y = 5. Then the normal to the hyperbola x2α2y2β2=1 at the point ( α+ 4, β+ 4) does NOT pass through the point:

Read more
Q:  

The length of the perpendicular from the point (1, 2, 5) on the line passing through (1, 2, 4) and parallel to the line x + y – z = 0 = x – 2y + 3z – 5 is:

Read more
Q:  

Let a=αi^+j^k^andb=2i^+j^αk^,α>0. If the projection of a×b on the vector i^+2j^2k^ is 30, then equal to:

Q:  

The mean and variance of a binomial distribution are and α3 respectively. If P(X = 1) = 4243 then P(X = 4 or 5) is equal to:

Read more
Q:  

Let E1, E2, E3 be three mutually exclusive events such that P(E1) = 2+3p6 , P(E3) = 2p8 and P(E3) = 1p2. If the maximum and minimum values of p are p1 and p2, then (p1 + p2) is equal to:

Read more
Q:  

Let S = {θ[0,2π]:82sin2θ+82cos2θ=16}. Then n(S)+θS(sec(π4+2θ)cosec(π4+2θ)) is equal to:

Q:  

 tan(2tan115+sec152+2tan118) is equal to:

Q:  

The statement ((pq))qis:

Q:  

If for some q, q, r  R, not at all have same sign, one of the roots of the equation (p2+q2)x22q(p+r)x+q2+r2=0 is also a root of the equation x2 + 2x – 8 = 0, then q2+r2p2 is equal to………….

Read more
Q:  

The number of 5-digit natural numbers, such that the product of their digits is 36, is………

Q:  

The series of positive multiples of 3 is divided into sets : {3},{6,9,12},{15,18,21,24,27},...... Then the sum of the elements in the 11th set is equal to…………..

Read more
Q:  

If the coefficients of x and x2 in the expansion of (1 + x)p (1 – x)q, p, q  15, are -3 and -5 respectively, then the coefficient of x3 is equal to…………………

Read more
Q:  

If n(2n+1)01(1xn)2ndx=117701(1xn)2n+1 dx, then n  N is equal to………….

Q:  

Let a cure y = y(x) pass through the point (3, 3) and the area of the origin under this curve, above the x-axis and between the abscissae 3 and x (>3) be (yx)3 . If the curve also passes through the point (α,610) in the first quadrant, then is equal to………….

Read more
Q:  

The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x – y = 3 respectively. If its orthocenter is (2, a), 12<a<2, then p is equal to…………

Read more
Q:  

Let the function f(x) = 2x2 – loge x, x  > 0, be decreasing in (0, a) and increasing in (a, 4). A tangent to the parabola y2 = 4ax at a point P on it passes through the point (8a, 8a – 1) but does not pass through the point ( 1 a , 0 ) .  If the equation of the normal at P is x α + γ β = 1 ,  then a + b is equal to…………….

Read more
Q:  

Let Q and R be two points on the line x + 1 2 = y + 2 3 = z 1 2  at a distance 2 6  from the point P(4, 2, 7). Then the surface of the area of the triangle PQR is……………

Read more
Maths NCERT Exemplar Solutions Class 12th Chapter One Logo

JEE Mains Solutions 2022,24th june , Maths, first shift

JEE Mains Solutions 2022,24th june , Maths, first shift

Q&A Icon
Commonly asked questions
Q:  

Let A = { z C : 1 | z ( 1 + i ) 2 } and B = { z A : | z ( 1 i ) | = 1 } . Then, B :

Read more
Q:  

The remainder when 32022 is divided by 5 is :

Q:  

The surface area of a balloon of spherical shape being inflated increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds, it becomes 7 units, then its radius after 9 seconds is :

Read more
Q:  

Bag A contains 2 white, 1 black and 3 red balls and bag B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random are found to be 1 red and 1 black. If the probability that both balls come from Bag A is 6 1 1 , then n is equal to ________.

Read more
Q:  

Let x2 + y2 + Ax + By + C = 0 be a circle passing through (0, 6) and touching the parabola y = x2 at (2, 4). Then A + C is equal to

Read more
Q:  

The number of values of a for which the system of equations :

x + y + z = a

ax + 2ay + 3z = -1

x + 3ay + 5z = 4

is inconsistent, is

Read more
Q:  

If the sum of the squares of the reciprocals of the roots a and b of the equation 3 x 2 + λ x 1 = 0 is 15, then 6 ( α 3 + β 3 ) 2 is equal to :

Read more
Q:  

The set of all values of k for which ( t a n 1 x ) 3 + ( c o t 1 x ) 3 = k π 3 , x R , is the interval :

Read more
Q:  

Let S = { n : 1 n 5 0 a n d n i s o d d } .

Let a S a n d A = [ 1 0 a 1 1 0 a 0 1 ] .  If a S d e t ( a d j A ) = 100l, then l is equal to :

Read more
Q:  

For the function f(x) = 4 loge(x – 1) – 2x2 + 4x + 5, x > 1, which one of the following is NOT correct?

Read more
Q:  

If the tangent at the point (x1, y1) on the curve y = x3 + 3x2 + 5 passes through the origin, then (x1, y1) does NOT lie on the curve:

Read more
Q:  

The sum of absolute maximum and absolute minimum values of the function f(x) = |2x2 + 3x + 2| + sin x cos x in the interval [0, 1] is :

Read more
Q:  

If { a i } i = 1 n , where n is an even integer, is an arithmetic progression with common difference 1, and i = 1 n a i = 1 9 2 , then n is equal to :

Read more
Q:  

If x = x(y) is the solution of the differential equation y d x d y = 2 x + y 3 ( y + 1 ) e y , x ( 1 ) = 0 ; then x(e) is equal to :

Read more
Q:  

Let lx – 2y = µ be a tangent to the hyperbola a 2 x 2 y 2 = b 2 . Then ( λ a ) 2 ( μ b ) 2 is equal to

Read more
Q:  

Let a ^ , b ^ and be unit vectors. If c ^ be vector such that the angle between a ^ a n d c i s π 1 2 , and b ^ = c + 2 ( c × a ^ ) , then | 6 c | 2 is equal to :

Read more
Q:  

If a random variable X follows the Binomial distribution B (33, p) such that 3P (X = 0) = P (X = 1) then the value of P ( X = 1 5 ) P ( X = 1 8 ) P ( X = 1 6 ) P ( X = 1 7 ) is equal to :L

Read more
Q:  

The domain of the function f(x) = c o s 1 ( x 2 5 x + 6 x 2 9 ) l o g e ( x 2 3 x + 2 ) is :

Read more
Q:  

Let S =  { θ [ π , π ] { ± π 2 } : s i n θ t a n θ + t a n θ = s i n 2 θ } . If θ S c o s 2 θ , then T = n(S) is equal to

Read more
Q:  

The number of choices for Δ { , , , } , such that ( p Δ q ) ( ( p Δ ~ q ) ( ~ p ) Δ q ) is a tautology, is :

Read more
Q:  

The number of one-one functions f:{a, b, c, d} ® {0, 1, 2, ……., 10} such that 2f (a) – f(b) + 3f(c) + f(d) = 0 is ___________.

Read more
Q:  

In an examination, there are 5 multiple choice questions with 3 choices, out of which exactly one is correct. There are 3 marks for each correct answer, -2 marks for each wrong answer and 0 mark if the question is not attempted. Then, the number of ways a student appearing in the examination gets 5 marks is __________

Read more
Q:  

Let A ( 3 a , a ) , a > 0 , be a fixed point in the xy-plane. The image of A in y-axis be B and the image of B in x-axis be C. If D (3 cos q, a sin q) is a point in the fourth quadrant such that the maximum area of Δ A C D is 12 square units, then a is equal to _________.

Read more
Q:  

Let a line having direction ratios 1, -4, 2 intersect the lines x 7 3 = y 1 1 = z + 2 1 and x 2 = y 7 3 = z 1 at the points A and B. Then (AB)2 is equal to _________.

Read more
Q:  

The number of points where the function f(x) = { | 2 x 2 3 x 7 | i f x 1 [ 4 x 2 1 ] i f 1 < x < 1 | x + 1 | + | x 2 | i f x 1 [t] denotes the greatest integer   t is discontinuous is __________-.

Read more
Q:  

Let f (θ) = s i n θ + π 2 π 2 ( s i n θ + t c o s θ ) f ( t ) d t . Then the value of | 0 π 2 f ( θ ) d θ | is

Read more
Q:  

Let M a x 0 x 2 { 9 x 2 5 x } = α a n d M i n 0 x 2 = { 9 x 2 5 x } = β  

If β 8 3 2 α 1 M a x { 9 x 2 5 x , x } d x = α 1 + α 2 l o g e ( 8 1 5 ) then α 1 + α 2 is equal to __________.

Read more
Q:  

If two tangents drawn from a point (a, b) lying on the ellipse 25x2 + 4y2 = 1 to the parabola y2 = 4x are such that the slope of one tangent is four times the other, then the value of ( 1 0 α + 5 ) 2 + ( 1 6 β 2 + 5 0 ) 2 equals __________.

Read more
Q:  

Let S be the region bonded by the curves y = x3 and y2 = x. The curve y = 2|x| divides S into two regions of areas R1, and R2 _________.

If max {R1, R2} = R2, then R 2 R 1  is equal to _________.

Read more
Q:  

If the shortest distance between the lines r = ( i ^ + 3 k ^ ) + λ ( i ^ a j ^ ) a n d r = ( j ^ + 2 k ^ ) + μ ( i ^ j ^ + k ^ ) is 2 3 , then the integral value of ‘a’ is equal to __________.

Read more
qna

Maths NCERT Exemplar Solutions Class 12th Chapter One Exam

Student Forum

chatAnything you would want to ask experts?
Write here...