Maths
Get insights from 6.5k questions on Maths, answered by students, alumni, and experts. You may also ask and answer any question you like about Maths
Follow Ask QuestionQuestions
Discussions
Active Users
Followers
New answer posted
3 months agoContributor-Level 10
f (1)=1.
f (4)=f (2)²=1 or 4.
f (6)=f (2)f (3).
Possible functions determined by values at primes: f (2), f (3), f (5), f (7).
f (2) can be 1 or 2. f (3) can be 1 or 3. f (5)=1,5. f (7)=1,7.
If f (m)=m, f (mn)=mn. One function. f (x)=1 is another.
What if f (2)=1, f (3)=3? f (6)=3.
New answer posted
3 months agoContributor-Level 10
f (x) is discontinuous at integers x=1,2,3. P= {1,2,3}.
f (x) is not differentiable at integers and where x- [x]=1+ [x]-x ⇒ 2 (x- [x])=1 ⇒ {x}=1/2.
So at x=0.5, 1, 1.5, 2, 2.5.
Q= {0.5, 1, 1.5, 2, 2.5}. Sum of elements is not asked.
Number of elements in P=3, in Q=5. Sum = 8.
Let's check the solution. Q= {1/2, 1, 3/2, 5/2}.
The sum of number of elements: 3+5=8.
New answer posted
3 months agoContributor-Level 10
Determinant of vectors must be zero. Vector between points on lines: (-1-k, -2-2, -3-3). Vector directions: (1,2,3) and (3,2,1).
| -1-k, -4, -6; 1, 2, 3; 3, 2, 1 | = 0.
(-1-k) (2-6) - (-4) (1-9) + (-6) (2-6) = 0.
4 (1+k) - 32 + 24 = 0.
4+4k - 8 = 0. 4k=4 ⇒ k=1.
New answer posted
3 months agoContributor-Level 10
a*b=c ⇒ a.c=0, b.c=0.
|c|² = |a|²|b|² - (a.b)² = (3)|b|² - 1. |c|=√2. So |b|²=1, |b|=1.
Projection of b on a*c.
a*c = a* (a*b) = (a.b)a - (a.a)b = a - 3b.
|a-3b|² = |a|²+9|b|²-6 (a.b) = 3+9-6 = 6.
l = |b. (a-3b)|/|a-3b| = | (a.b)-3|b|²|/√6 = |1-3|/√6 = 2/√6.
3l² = 3 (4/6) = 2.
New answer posted
3 months agoContributor-Level 10
f (x) = |sin²x, -2+cos²x, cos2x; 2+sin²x, cos²x, cos2x; sin²x, cos²x, 1+cos2x|.
R? →R? -R? , R? →R? -R?
f (x) = |sin²x, -2+cos²x, cos2x; 2, 2-2cos²x, 0; 0, 2-2cos²x, 1|.
f (x) = sin²x (2-2cos²x) - (-2+cos²x) (2) + cos2x (2 (2-2cos²x).
This seems tedious. From the solution, f (x)=4+2cos2x.
Max value when cos2x=1, f (x)=6.
New answer posted
3 months agoContributor-Level 10
Coeff of x? in (2+x/3)? is? C? 2? (1/3)?
Coeff of x? in (2+x/3)? is? C? 2? (1/3)?
? C? 2? / 3? =? C? 2? / 3?
(n!/ (7! (n-7)!) * 2 = (n!/ (8! (n-8)!) * (1/3).
2 / (n-7) = 1 / (8*3).
48 = n-7 ⇒ n=55.
New answer posted
3 months agoContributor-Level 10
e? F (x) = ∫ (3t²+2t+4F' (t)dt.
e? F (x)+e? F' (x) = 3x²+2x+4F' (x).
(e? -4)F' (x) = 3x²+2x-e? F (x).
F' (4) = (48+8-e? F (4)/ (e? -4).
Also F (3)=0, F (x)= (x³+x²-36)/ (e? -4) from solution. F (4)= (64+16-36)/ (e? -4) = 44/ (e? -4).
F' (4) = (56-e? (44/ (e? -4)/ (e? -4) = (56 (e? -4)-44e? )/ (e? -4)² = (12e? -224)/ (e? -4)².
α=12, β=4. α+β=16.
New answer posted
3 months agoContributor-Level 10
Vector on plane: (3-2, 7-3, -7- (-2) = (1,4, -5).
Line direction vector (-3,2,1).
Normal to plane n = (1,4, -5)* (-3,2,1) = (14,14,14) or (1,1,1).
Plane: 1 (x-3)+1 (y-7)+1 (z+7)=0 ⇒ x+y+z-3=0.
d = |-3|/√3 = √3. d²=3.
New answer posted
3 months agoContributor-Level 10
(a+b+c)² = a²+b²+c²+2 (ab+bc+ca)
1² = a²+b²+c²+2 (2) ⇒ a²+b²+c² = -3.
a²b²+b²c²+c²a² = (ab+bc+ca)² - 2abc (a+b+c) = 2² - 2 (3) (1) = -2.
a? +b? +c? = (a²+b²+c²)² - 2 (a²b²+b²c²+c²a²) = (-3)² - 2 (-2) = 9+4=13.
New answer posted
3 months agoContributor-Level 10
Δ = |1,1, -1; 1,2, α 2, -1,1| = 1 (2+α)-1 (1-2α)-1 (-1-4) = 2+α+2α-1+5 = 3α+6=0 ⇒ α=-2.
Δ? = |2,1, -1; 1,2, α β, -1,1| = 2 (2+α)-1 (1-αβ)-1 (-1-2β) = 4+2α-1+αβ+1+2β = 4+2α+αβ+2β=0.
4-4-2β+2β=0. This holds.
Δ? = |1,2, -1; 1,1, α 2, β,1| = 1 (1-αβ)-2 (1-2α)-1 (β-2) = 1-αβ-2+4α-β+2 = 1+4α-αβ-β=0.
1-8+2β-β=0 ⇒ -7+β=0 ⇒ β=7.
α+β = -2+7 = 5.
Taking an Exam? Selecting a College?
Get authentic answers from experts, students and alumni that you won't find anywhere else
Sign Up on ShikshaOn Shiksha, get access to
- 65k Colleges
- 1.2k Exams
- 679k Reviews
- 1800k Answers
