Ncert Solutions Maths class 11th

Get insights from 1.6k questions on Ncert Solutions Maths class 11th, answered by students, alumni, and experts. You may also ask and answer any question you like about Ncert Solutions Maths class 11th

Follow Ask Question
1.6k

Questions

0

Discussions

17

Active Users

83

Followers

New answer posted

4 months ago

0 Follower 4 Views

A
alok kumar singh

Contributor-Level 10

66. The given eqn of the line is.

4x + 7y – 3 = 0 _____ (1)

2x – 3y + 1 = 0 _______ (2)

Solving (1) and (2) using eqn (1) 2 x eqn (2) we get,

(4x + 7y – 3) 2 [ (2x – 3y + 1)] = 0

4x + 7y – 3 – 4x + 6y – 2 = 0

13y = 5

y = 513

And 2x – 3  (513) + 1 = 0

2x = 1513 – 1 = 213

x=113

Point of intersection of (1) and (2) is  (113, 513)

Since, the line passing through  (113, 513) has equal intercept say c then it is of the form

xc+yc=1.

x + y = c

113+513=c

c = 613

the read eqn of line is x + y = 613

13x + 13y – 6 = 0

New answer posted

4 months ago

0 Follower 7 Views

A
alok kumar singh

Contributor-Level 10

65. x – 2y = 3

y = x2 - 32______ (1)

Slope of line (1) is 12

Let the line through P (3, 2) have slope m

Then, angle between the line = |m121+m12|

tan45°=|2m12+m|

1=|2m12+m|

2m12+m=±1.

When,  2m12+m=1 =>2m – 1 = 2 + m=> m = 3.

The eqn of line through (3, 2) is

y – 2 = 3 (x – 3) 3x – y – 7 = 0.

When 2m12+m = – 1=> 2m – 1 = – 2 – m =>3m = – 1 m = 13

The equation of line through (3,2) is,

y – 2 = 13 (x – 3) => 3y – 6 = – X + 3

x + 3y – 9 = 0

New answer posted

4 months ago

0 Follower 11 Views

A
alok kumar singh

Contributor-Level 10

64. The given eqn of the three lines are

y = m1 x + c1 ______ (1)

y = m2 x + c2 ______ (2)

y = m3 x + c3 ______ (3)

The point of intersection of (2) and (3) is given by.

y - y = (m2x + c2) - (m3 x + c3)

(m2 - m3) x = c3 - c2

x=c3-c2m2-m3.

Hence, y = m2(c3-c2)(m2-m3)+c2

=m2(c3-c2)+c2(m2-m3)m2-m3.

=m2c3-m3c2m2-m3.

ie,(c3-c2m2-m3,m2c3-m3c2m2-m3)

As the three lines are concurrent, the point of intersection of (2) and (3) lies on line (1) also

i e, m2c3-m3c2m2-m3=m1(c3-c2m2-m3)+c1

-m1(c2-c3)+c1(m2-m3)m2-m3=-m2c3-m3c2m2-m3.

m1 (c2 - c3) - c1 (m2 - m3) + m2 c3 - m3 c2 = 0

m1 (c2 - c3) - m2 c1 + m3 c1 + m2 c3 - m3 c2 = 0

m1 (c2 - c3) + m2 (c3 - c1) + m3 (c1 - c2) = 0

New answer posted

4 months ago

0 Follower 14 Views

A
alok kumar singh

Contributor-Level 10

63. The given eqn of the lines are.

3x + y - 2 = 0 _____ (1)

Px + 2y - 3 = 0 ______ (2)

2x - y - 3 = 0 _____ (3)

Point of intersection of (1) and (3) is given by,

(3x + y - 2) + (2x - y - 3) = 0

=> 5x - 5 = 0

=> x = 55

=> x = 1

So, y = 2 - 3x = 2 -3 (1) = 2 - 3 = 1.

i e, (x, y) = (1, -1).

As the three lines interests at a single point, (1, -1) should line on line (2)

i e, P * 1 + 2 * (-1)- 3 = 0

P - 2 - 3 = 0

P = 5

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

29. Given, f(x)=|x – 1|.

The given function is defined for all real number x.

Hence, domain of f(x)=R.

As f(x)=|x – 1|, x  R is a non-negative no.

Range of f(x)=[0, ?), if positive real numbers.

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

28. Given, f (x)=

The given fxn is valid for all x such that x – 1 ≥ 0 ⇒x≥ 1

∴ Domain of f (x)= [1,∞)

As x ≥ 1

⇒ x – 1 ≥ 1 – 1

⇒ x – 1 ≥ 0

⇒ ≥ 0

⇒ f (x) ≥ 0

So, range of f (x)= [0,∞ )

New answer posted

4 months ago

0 Follower 5 Views

A
alok kumar singh

Contributor-Level 10

62. 

The given eqn of the lines are

 y - x = 0 _____ (1)

x + y = 0 ______ (2)

x - k = 0 ______ (3)

The point of intersection of (1) and (2) is given by

(y - x) - (x + y) = 0

⇒ y - x -x -y = 0

y = 0 and x = 0

ie, (0, 0)

The point of intersection of (2) and (3) is given by

(x + y) – (x – k) = 0

y + k = 0

y = –k and x = k

i.e, (k, –k)

The point of intersection of (3) and (1) is given by

x = k

and y = k

ie, (k, k).

Hence area of triangle whose vertex are (0, 0), (k, –k)

and (k, k) is

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

27. Given, f (x)= x 2 + 2 x + 1 x 2 8 x + 1 2

The given function is valid if denominator is not zero.

So, if x2 – 8x+12=0.

x2 – 2x – 6x+12=0

x (x – 2) –6 (x – 2)=0

⇒ (x – 2) (x – 6)=0

x=2 and x=6.

So,  f (x) will be valid for all real number x except x=2,6.

∴ Domain of f (x)=R – {2,6}

New answer posted

4 months ago

0 Follower 3 Views

A
alok kumar singh

Contributor-Level 10

61. The given Eqn of the line is x4+y6 = 1 ______ (1)

so, Slope of line = -64=32.

The line ⊥ to line (1) say l2 has

Slope of l2 = 1 (3/2)=23.

Let P (0, y) be the point of on y-axis where it is cut by the line (1)

Then,  04+y6=1

y = 6

i.e, the point P has co-ordinate (0, 6)

Eqn of line ⊥ to x4+y6=1 and cuts y-axis at P (0,6) is

y – 6 = 23 (x – 0)

3y – 18 = 2x

2x – 3y + 18 = 0

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

26. Given, f(x)=x2.

f ( 1 . 1 ) f ( 1 ) 1 . 1 1 = ( 1 . 1 ) 2 1 2 1 . 1 1 = 1 . 2 1 1 0 . 1 = 0 . 2 1 0 . 1 = 2 . 1

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 687k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.