Trigonometric Functions

Get insights from 128 questions on Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Trigonometric Functions

Follow Ask Question
128

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

31. L.H.S. = sin 2x + 2 sin 4x + sin 6x

Using sin A + sin B = 2 sin A + B/2 cos A - B/2  we have,

L.H.S. = (sin 2x + sin 6x) + 2 sin 4x

= 2 s i n ( 2 x + 6 x 2 ) c o s ( 2 x 6 x 2 ) + 2 s i n 4 x .

= 2 s i n 8 x 2 c o s ( 4 x 2 ) + 2 s i n 4 x .

= 2 s i n 4 x c o s 2 x + 2 s i n 4 x [ ? c o s ( x ) = x ]

= 2 s i n 4 x [ c o s 2 x + 1 ]

We know that,

cos2x=2cos2x1

cos2x+1=2cos2x

Hence,

L.H.S=2sin4x(2cos2x)

=4cos2xsin4x

= R.H.S

New answer posted

4 months ago

0 Follower 7 Views

P
Payal Gupta

Contributor-Level 10

30. L.H.S L.H.S=cos22xcos26x

= ( c o s 2 x + c o s 6 x ) ( c o s 2 x c o s 6 x ) [ ? a 2 b 2 = ( a b ) ( a + b ) ]

L.H.S = L.H.S=[2cos(2x+6x2)cos(2x6x2)][2sin2x+6x2sin(2x6x2)]
= [ 2 c o s 8 x 2 c o s ( 4 x 2 ) ] [ 2 s i n ( 8 x 2 ) s i n ( 4 x 2 ) ]
= 2 c o s 4 x c o s 2 x * 2 s i n 4 x · s i n 2 x [ ? c o s ( x ) = c o s x ; s i n ( x ) = s i n x ]
= 2 s i n 4 x c o s 4 x * 2 s i n 2 x c o s 2 x

As sin 2θ = 2 sinθ cosθ.

L.H.S. = sin (2*4x) sin(2*2x)

= sin 8x sin 4x

= R.H.S.

New answer posted

4 months ago

0 Follower 6 Views

P
Payal Gupta

Contributor-Level 10

29. L.H.S  L.H.S=sin26xsin24x.

= ( s i n 6 x + s i n 4 x ) ( s i n 6 x s i n 4 x ) . [ a 2 b 2 = ( a b ) ( a + b ) ]

So, L.H.S L.H.S.=(2sin(6x+4x2)cos(6x4x2))(2cos(6x+4x2)sin(6x4x2))

= ( 2 s i n 1 0 x 2 c o s 2 x 2 ) ( 2 c o s 1 0 x 2 s i n 2 x 2 )

= 2 s i n 5 x c o s x 2 c o s 5 x s i n x

= 2 s i n 5 x c o s 5 x 2 c s i n x c o s x .

As sin2θ=2sinθcosθ we can write.

L.H.S =sin(2*5x)=sin(2*x)

=sin10xsin2x= R.H.S. R.H.S

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

28. L.H.S =  L.H.S =cos(3π4+x)cos(3π4x)

Using cos (A + B) = cos A cos B – sin A sin B

and cos (A – B) = cos A cos B + sin A sin B

L.H.S =[cos3π4cosxsin3π4sinx][cos3π4cosx+sin3π4sinx]

= c o s 3 π 4 c o s x s i n 3 π 4 s i n x c o s 3 π 4 c o s x s i n 3 π 4 s i n x .

= 2 s i n 3 π 4 s i n x .

= 2 s i n ( 4 π π 4 ) s i n x .

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

27. L.H.SL.HS=sin (x+1)xsin (x+2)x+cos (x+1)xcos (x+2)x.

= c o s ( x + 1 ) x c o s ( x + 2 ) x + s i n ( x + 1 ) x s i n ( x + 2 ) x .

Let A = (n+1)x and B = (n+2)x

So, L.H.S = cosAcosB + sin Asin B

= c o s ( A B )

Putting values of A and B we get,

L.H.S = L.H.S = cos [ (n+1)x (n+2)x]

= c o s [ n x + x n x 2 x ]

= c o s ( x )

=cosx= R.H.S R.H.S

New question posted

4 months ago

0 Follower 1 View

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

26. L.H.S L.H.S.=cos(3π2+x)cos(2π+x)[cot(3π2x)+cot(2π+x)]

Here,

c o s ( 3 π 2 + x ) = c o s ( 4 π π 2 + x ) = c o s ( 2 π π 2 + x )

=cos[2π(π2x)];VI quadrant.

cos(π2x);i Ist quadrant. 

= s i n x

cos(2x+x)=cosx,as xlies in Istquadrant.

cot(2π+x)=cotx;asxliesinIstquadrant.

c o t ( 3 π 2 x ) = c o t [ 4 π π 2 x ]

= c o t [ 2 π π 2 x ]

=cot[2x(π2+x)]; VIth quadrant.

=cot(π2+x);IIndquadrat.

= ( t a n x )

= t a n x .

So.L.H.S L.H.S=sinxcosx[tanx+cotx]

= s i n x c o s x [ s i n x c o s x + c o s x s i n x ]

= s i n x c o s x ( s i n 2 x + c o s 2 x ) c o s x s i n x

= s i n 2 x + c o s 2 x

= 1

= R.H.S.

New answer posted

4 months ago

0 Follower 1 View

P
Payal Gupta

Contributor-Level 10

25. Kindly go through the solution

New answer posted

4 months ago

0 Follower 1 View

P
Payal Gupta

Contributor-Level 10

24. Kindly go through the solution

New answer posted

4 months ago

0 Follower 1 View

P
Payal Gupta

Contributor-Level 10

23. (i) sin 75°= sin (45°+30°)

Using sin (x + y)= sin x cos y + cos x sin y we can write

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.