Trigonometric Functions

Get insights from 128 questions on Trigonometric Functions, answered by students, alumni, and experts. You may also ask and answer any question you like about Trigonometric Functions

Follow Ask Question
128

Questions

0

Discussions

4

Active Users

0

Followers

New answer posted

4 months ago

0 Follower 42 Views

P
Payal Gupta

Contributor-Level 10

52. L.H.S. = 2 cos π13 cos 9π13 + cos 3π13 + cos 5π13 =∂ .

= 2 cos π13 cos 9π13 + 2 cos (3π13+5π13)2¯ cos (3π135π13)2

[?cosA+cosB=2cosA+B2cosAB2]

= 2 cos π13 cos 9π13 + 2. cos (8π/132) cos (2π/132)

= 2 cos π13 cos 9π13 + 2 cos 4π13 cos π13 [ ? cos (x) = cosx].

= 2 cos π13 [cos9π13+cos4π13].

= 2 cos π13[2cos(9π13+4π132)cos(9π134π132)]

= 2 cos π13 [2·cos(13π/132)cos(5π/132)]

= 2 cos π3 * 2 *cos π2 * cos 5π26 .

= 2 cos π2 2* 0*cos 5π26

= 0

= R.H.S.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

51. We have,

sinx + sin 3x + sin 5x = 0.

(sinx + sin 5x) + sin 3x = 0.

Using sin A + sin B = 2 sin A+B2 cos A−B2 .

2 sin  (x+5x2) cos  (x5x2) + sin 3x = 0.

2 sin 6x2 cos-4x2  + sin 3x = 0.

2 sin 3xcos (-2x) + sin 3x = 0.

sin 3x [2 cos 2x + 1] = 0 [ ? cos (-x) = cosx].

sin 3x = 0 or 2 cos 2x + 1 = 0.

3x = nπ, n∈z. or cos 2x = -12 = -cos π3 = cos  π -π3= cos 2π3

x= nπ3 , n∈z or 2x = 2nπ± 2π3 .

x = nπ±π3 , n∈z.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

50. We have,

sec2 2x = 1 tan 2x

1 + tan2 2x = 1 tan 2x [ sec2x = 1 + tan2x]

tan2 2x + tan 2x = 0.

tan 2x (tan 2x + 1) = 0.

tan 2x = 0         or         tan 2x + 1 = 0.

2x = nπ, x∈z or tan 2x = -1 = -tan π4 = tan π-π4  = tan 3π4.

x= nπ2 , n∈z or 2x = nπ + 3π4 , n∈z.

x = nπ2+3π8,  n∈z

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

49. We have,

sin 2x + cosx = 0.

2 sin cosx + cosx = 0 ( ?  sin 2x = 2 sin xcosx)

cosx (2 sin x + 1) = 0.

cosx = 0 or 2 sinx + 1 = 0.

x = (2n + 1) π2, n∈z or sin x = 12 = -sin π6 = sin  π + π6= sin 7π6.

x = (2n + 1) π2, x∈z or x= nπ + (-1)n 7π6,  n∈z.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

48. We have,

cos 3x + cosx-cos 2x = 0.

(cos 3x + cosx) cos 2x = 0

Using cos A + cos B = 2 cos A+B2 cos A-B2

2 cos  (3x+x2) cos  (3xx2) - cos 2x = 0.

2 cos 4x2 cos 2x2 - cos 2x = 0

2 cos 2xcosx - cos 2x = 0

cos 2x. (2 cosx - 1) = 0.

cos 2x = 0 or 2 cosx -1 = 0.

2x = (2n + 1) π2, n∈z or cosx = 12 = cos π3

x = (2n + 1) π4, n∈z or x = 2nx± π3, n∈z.

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

47. We have,

cos 4x = cos 2x.

⇒ cos 4x-cos 2x = 0.

⇒ -2 sin (4x+2x2) sin  (4x2x2) = 0.

⇒sin 6x2 sin 2x2 = 0

⇒sin 3x sin x = 0.

∴sin 3x = 0 or sin x = 0

3x = nπ or x = nπ, n∈z,

⇒x = nπ3 or x = nπ, n∈z

New answer posted

4 months ago

0 Follower 2 Views

P
Payal Gupta

Contributor-Level 10

46. We have cosec x = 2 .i e, cosec x = (-)ve,

So, the principal solution lies in IIInd and IVth quadrent.

Now, cosec x = -2 = -cosec π6 = cosec (π+π6= cosec (2ππ6)

So the principal solution are x =  (π+π6) and (2ππ6)

(6π+π6) and  (12ππ6)

7π6 and 11π6.

As cosec x = cosec 7π6 ⇒sin x = sin 7πc  [? cosecx=1sinx]

The general solution has the form,

x = nπ + (-1)n 7π6 , n∈z.

New answer posted

4 months ago

0 Follower 4 Views

P
Payal Gupta

Contributor-Level 10

45. We have, cot x = -√3  i.e., cot x is negative

So, the principal solution lies in IInd and IVth quadrant.

So the principal solution are a =  (ππ6) and  (2ππ6)

(6ππ6) and  (12ππ6)

5π6 and 11π6.

As cot x = cot 5π6 tan x = tan 5π6  [? cotx=1tanx]

The general solution has the form.

x = n+ 5π6 , nz

New answer posted

4 months ago

0 Follower 8 Views

P
Payal Gupta

Contributor-Level 10

43. tanx = √3

We have, tan x = √3

Since tan x is (+) ve the principal solution lies in Ist and IIInd quadrant

Now, tan x = √3 = tan π 3 . = tan ( π + π 3 )

Principal solution are x = π 3  and ( π + π 3 )

        π 3 =  and ( 3 π + π 3 )

        π 3 = and 4 π 3 .

As tan x = tan π 3

The general solution is.

x = np + π 3 , n∈z

New answer posted

4 months ago

0 Follower 3 Views

P
Payal Gupta

Contributor-Level 10

42. L.H.S. = cos 6x

= cos 3 (2x)

= 4 cos32x – 3 cos 2x                 [Q cos 3A = 4 cos3A – 3cos A]

= 4 [ (2 cos2x – 1)3] – 3 [ (2 cos2x – 1)]                      [Q cos 2x = 2 cos2x – 1]

= 4 [ (2 cos2x)3  + 3 [ (2 cos2x)2 (–1) + 3 (2 cos2x) (–1)2 + (–1)3] – 3 (2 cos2x) + 3

{Q (a + b)3= a3 + b3 + 3a2b + 3ab2}

= 4 [8 cos6x – 12 cos4x + 6cos2x – 1] – 6 cos2x + 3.

= 32 cos6x – 48 cos4x + 24 cos2x – 4 – 6cos2x + 3

= 32 cos6x – 48 cos4

...more

Get authentic answers from experts, students and alumni that you won't find anywhere else

Sign Up on Shiksha

On Shiksha, get access to

  • 65k Colleges
  • 1.2k Exams
  • 688k Reviews
  • 1800k Answers

Share Your College Life Experience

×
×

This website uses Cookies and related technologies for the site to function correctly and securely, improve & personalise your browsing experience, analyse traffic, and support our marketing efforts and serve the Core Purpose. By continuing to browse the site, you agree to Privacy Policy and Cookie Policy.